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Starting from the relation between integrable relativistic N-particle systems with hyperbolic
interactions and elementary N-soliton solutions to the KP and 2D Toda equations, we show
how fusion properties of the soliton solutions are mirrored by fusion properties of the Poisson
commuting particle dynamics. We also obtain previously known relations between elliptic
solutions and integrable N-particle systems with elliptic interactions, without invoking finite-
gap integration theory. © 1997 Academic Press
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1. INTRODUCTION AND SUMMARY

This paper is concerned with relations between special solutions to the
Kadomtsev—Petviashvili (KP) and 2D Toda equations on the one hand, and with
integrable one-dimensional N-particle systems of Calogero—Moser type on the other
hand. Our main focus consists of the well-known N-soliton solutions, which will be
related to particle systems with hyperbolic interactions, but we also consider a class
of solutions connected to elliptic particle systems.

Our results concerning the soliton—particle correspondence are mostly new, and
may be viewed as generalizations of similar results for a class of soliton PDEs and
lattices obtained in a joint paper with Schneider [1], and then extended to other
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equations in [ 2, 3]. By contrast, the results concerning elliptic particle systems and
solutions to the KP and 2D Toda equations are not new: For the KP case the per-
tinent connection was made by Krichever a long time ago [4], whereas the 2D
Toda case was handled quite recently by Krichever and Zabrodin [5]. Here, our
contribution consists in deriving the key relations in a novel way, altogether
bypassing finite-gap integration theory, the main tool in [4, 5].

We proceed by reviewing the necessary information on the solitons and equations
at issue, and then summarize our main findings and the organization of this paper.

The soliton solutions we consider are of the form

= Z exp< ) it By + Z ﬂjéj)v (L.1)

His o iy =0,1 1<j<ksN 1<j<N
with

(aj_ak)(bj—bk)

XPUB) = G BB, —ay)

Sk=1,.,N. (12)

Here, a,, .., ay, by, .., by are distinct non-zero complex numbers, and the quan-
tities &, ..., & are complex numbers depending linearly on an infinite sequence of
complex evolution parameters—the hierarchy “times.” (We shall discuss reality
restrictions later on.) Accordingly, the r-functions solve an infinite number of non-
linear Hirota type equations of motion, each of which involves a finite number of
hierarchy times.

In this paper we only consider the simplest Hirota equation in the hierarchy,
both for KP and for 2D Toda. For the KP case this Hirota bilinear equation can
be written as (@, = 0/01))

2*Int+6(3%Int)2+48,0;In1—302In =0 (1.3)

and ¢; reads

&=80+1 Y, tday—by). (14)

Kk=1

Thus, (1.3) only involves the evolution parameters ¢, t,, t5, and the remaining
times may just as well be taken equal to 0 when studying (1.3). The original KP
equation [6] results by setting

=-20Int (1.5)

and reads

302u=0,(405u— 6ud,u+03u). (1.6)
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The 2D Toda hierarchy involves 7-functions 7,, ve Z, and the simplest equation
reads (0, =0/0t )

6+5_1nr‘,=z:—;—f‘—3—1—1, vel. (1.7)

v

In terms of
¢,=p " 'In(z, /1, ) (1.8)
this takes the more familiar form [7]
0,0 ¢=pn""(expu(d,r1—¢.) —expu(¢,—d,_1)). (19)

The soliton t-functions 7, arise by substituting &, = ¢; , in (1.1) with

&=l wvin(ap/b) +i Y (1. o (af=b)) +1,., (a7 "=b;%).  (1.10)
k=1
Setting ¢, , =t ,t; _ =t_ yields solutions to (1.7), for which the higher hierarchy

times may be ignored. It is to be noted that the KP function 7(¢) equals the 2D
Toda function (¢, ¢_) with v=0,¢, ., =t 1. _=0,xeN*

Save for the N =1 case, it is not an easy matter to verify that the z-functions just
defined do satisfy the equations of motion (1.3) and (1.7). There are quite a few
papers addressing this issue and presenting arguments of varying degrees of explicit-
ness and rigor. To our knowledge, the above soliton z-functions solving the KP and
2D Toda hierarchies were introduced by the Kyoto school—as a byproduct of the
intimate connection between affine Lie algebras, Bogoliubov transformations, and
soliton equations, which they discovered and elaborated on in great detail. Two
comprehensive surveys of this impressive body of knowledge are [8] and [9]; in
particular, the above soliton solutions can be found there. (We should add that we
have an extra factor i in (1.4) and (1.10); it occurs with an eye on later reality
restrictions, but it should be noted that it gives rise to sign changes at various
places.)

In order to connect the above solitons to integrable particle systems, it is crucial
to rewrite a; and b, as

a;=exp(n,— ic,), b;=exp(n;+ic)), (1.11)

where 7;, ¢, are complex numbers. After this reparametrization the KP and Toda
quantities can be rewritten as

&=80+2 i t,. sin(xc,) exp(k;) (1.12)

x=1
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and

& =80 —2ive;+2 Y sin(kc))(t,, o exp(kn;) —t,, _ exp(—xy;),  (1.13)

k=1

resp., whereas (1.2) turns into

sh(n,— 1)/2 +sin’(¢; — ¢;)/2
sh2(n7,— 1m)/2 +sin’(¢c; + ¢,)/2

exp(By) = (1.14)

Of particular interest—also as regards the soliton—particle correspondence—is
the special case

exp(2inc)=1, n=23,., j=1,.,N. (1.15)
Then we can and will take
c;=mm/n, ne{l,.,n—1}, (1.16)
and in the 2D Toda case we get periodicity mod :

Tv+n=Tva ¢v+n=¢va VEZ- (117)

From the viewpoint of Kac-Moody algebras, this amounts to a reduction of 4%}
to 4", [8,9].

We are now in a position to summarize a principal result of this paper, which
pertains to the above N-soliton 7-functions with parameters @, and b; of the form
(1.11), where ¢; is given by

¢;=nc, neN*  j=1.,N, (1.18)
and c is required to satisfy
¢ e€(0, z/max(n,, .., ny)). (1.19)

Our finding is that these N-soliton z-functions can be tied in with integrable N-par-

ticle systems that are quite novel from one perspective, but whose definition

involves integrable (n, + --- + ny)-particle systems that are well known by now.
To explain this statement in more detail, let us first specialize to the case

¢y=---=cy=ce(0,7) (1.20)

where all n; are equal to 1. Then the two systems just alluded to are identical: They
are the integrable N-particle systems introduced in our joint paper with Schneider
[ 1]. Henceforth, we denote these systems as Il (¢, N) systems. (The notation refers
to type II (hyperbolic) and relativistic (as opposed to nonrelativistic) Calogero-
Moser systems; to avoid confusion we are using a parameter ¢ instead of the
parameter T from our papers [ 10-12], whose results we will need later on.)
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Now for the special case (1.20) with ¢ =7/2 the soliton-particle correspondence
was already described in [ 1]. Indeed, the KP and 2D Toda equations then amount
to the KdV and sine-Gordon equations. More generally, for the A", reduction
(i.e., c=m/n), the connection of the Il (¢, V) system to N-soliton solutions of the
reduced KP hierarchy was first pointed out in [2]—though we did not spell out
the details there. Moreover, we conjectured in Section 5 of [2] that there exist
integrable N-particle systems generalizing the I systems, in terms of which the
general KP N-soliton solution should arise.

We are unable to rule out that this is true, but we do not consider this a plausible
conjecture any longer. Indeed, our main finding referring to the N-soliton z-func-
tions with (1.18) and (1.19) in force is quite different: The above (n, + .-+ +ny)-
particle system is simply the II (¢, n, + -+ + ny)-particle system, and the “novel”
N-particle system arises by restricting the analytic continuation of N among the
commuting flows to a 2N-dimensional invariant subspace of the complexified phase
space. In this scenario a soliton with parameter »;,=n (henceforth an s,-soliton) can
be viewed, roughly speaking, as a bound state of n Il,(c¢) particles.

We proceed with a more detailed summary of our results and the organization
of this paper. Section 2 has a preparatory character. We first recall how Cauchy’s
identity can be exploited to write the above r-functions as determinants of an N x N
matrix. The asymptotics of the z-function as one or more evolution parameters go
to infinity can therefore be reduced to the asymptotics of the spectrum of this
matrix. The pertinent spectral asymptotics was determined in a general setting in
Appendix A of [10] and applies to the case at hand, too. In this way one quickly
arrives at the well-known conservation of momenta and factorized position shifts
associated with the above solitons.

In the second part of Section 2 we isolate a crucial fusion property of the z-func-
tions: The N-soliton r-function with parameters c; satisfying (1.18) and (1.19) can
be obtained as a limit of the (n;+ --- +ny)-soliton r-function with all ¢; equal
to c. This involves a reparametrization of the &7 that may appear quite ad hoc, but
it is precisely this change of parameters that enables us to make contact with the
IT,.i(c) systems.

This connection is worked out in Sections 3-7. Section 7 deals with the general
case (1.18), (1.19), and we arrive at the general soliton—particle correspondence via
several intermediate levels of generality studied in Sections 3-6. Each of these levels
is of interest by itself and points the way to proceeding further.

Our starting point in Section 3 consists in specializing to s,-solitons, ie., we
assume (1.20). (We shall refer to these solitons as elementary solitons—following
Hollowood [ 13, 14], who studied the 4", Toda case.) For this special case the
correspondence can already be gleaned from [ 1-3]. But as it turns out, to handle
the next levels of generality, we need various results from our papers [10-12],
which concern action-angle transformations for systems of Calogero-Moser type.

The relevant material from [ 10] is reviewed in Section 3, starting from the above
r-functions. Proceeding in this reverse order, we will be able to explain more easily
just what is involved in encoding soliton interactions via finite-dimensional
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Hamiltonian systems. Furthermore, this approach enhances the cogency of our
finding for the general case, which is not such as one might have expected.

In Section 4 we begin by recalling how an analytic continuation (“crossing sub-
stitution”) of the I, (¢, N) system gives rise to a system with N, particles and N _
“antiparticles” (N, + N _ = N), which can form bound states whenever N, N _ #0.
The corresponding N-particle systems (denoted II,(c, N, , N_) from now on) give
rise to r-functions with N solitons and N_ antisolitons of the elementary (s,)
kind, which can form breather type bound states. Now in the special case
N=2M,N_=N_=M, there exists a 2M-dimensional invariant submanifold of
the 2N-dimensional phase space, which corresponds to M particle-antiparticle pairs
in their ground state (i.e., with maximal binding energy). These breather type pairs
do not breathe in the distant past and far future, but for finite times they are alive
and interact.

The crux is now that these mortal breathers in the II (¢, N, N) system (with
ce (0, 7/2)) interact just as N particles (or N antiparticles) in the II ,(2¢, N) system.
This remarkable fact was pointed out and studied in detail in [11], and it yields
the first stepping stone to extending the link of the II .(c) systems to the z-functions
with more general c¢;-values.

Indeed, in Section 4 we show how the N-soliton r-functions with ¢, = ... =
¢y=2c correspond to the “mortal breather” submanifold of the 4N-dimensional
I, (c, N, N) phase space. Generalizing the state of affairs for mortal breathers via
nth roots of unity, we then demonstrate in Section 5 how the s,-soliton t-functions
(ie., ¢,=--- =cy=nce(0, 7)) can be tied in with an invariant 2N-dimensional
real submanifold of the complexified 2nN-dimensional II(c, nN) phase space—
the commuting flows on this invariant submanifold amount to the I (nc, N)
flows.

As a matter of fact, our account in Section 5 is not mathematically complete.
Though the main points in the soliton—particle correspondence are presented there,
some technical details remain to be supplied. The questions left open may be
classified as “obviously true” or even “irrelevant” by a theoretical physicist, but they
are crucial issues from a global analyst’s viewpoint. We have shifted complete
answers to later sections (and Appendix E) so as to render Section 5 more
accessible to the less analytically inclined reader.

In the same vein, we have attempted to make Sections 6 and 7 more easily
readable by first supplying the necessary algebraic ingredients (including coordinate
changes to “harmonic oscillator variables” and renormalized dual Lax matrices),
and then sketching the remaining analysis in general terms before embarking on the
details. Section 6 contains a closeup of the N=1 and arbitrary-n case. As will be
made clear there, a mathematically complete picture of this special case can be
readily obtained from the comprehensive study of a generalized Sutherland system,
undertaken in our paper [12]. The latter system consists of n particles performing
oscillatory motion around a freely moving center of mass, and we only need our
results pertaining to the behavior near equilibrium—revealing that the s,-soliton
may be viewed as a III, n-particle molecule in its ground state.
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In Section 7 we finally study the arbitrary-n; case, making extensive use of the
ingredients and outlook presented in Section 6. Though we complete the treatment
of the equal-n; case at the end of Section 7 (using Appendix E to supply a crucial
algebraic ingredient), we are left with two precisely formulated assumptions that we
do not prove in the most general case. We present considerable evidence supporting
these technical assumptions, and we consider their general validity quite plausible,
but a complete proof has not materialized thus far.

We proceed by noting that we will not have occasion to make use of the KP and
Toda equations of motion (1.3) and (1.7) in all of the main text (Sections 2-7).
Rather, we take the above r-functions as a starting point, and show how they
naturally arise in the context of the systems introduced in [1]. It is of considerable
interest that for the Toda case the solution property can actually be proved by
exploiting the connection. Indeed, in Appendix A we show how our results on
action-angle maps for the Il (¢, N) systems (sketched in Section 3) can be used to
reduce the equation of motion (1.7) for elementary soliton z-functions to the func-
tional equations (A.13). Taking (A.13) for granted, the solution property for the
general case then readily follows from our fusion results in Section 2.

The functional equations (A.13) are proved in Appendix D, which is more
generally devoted to various functional identities occurring in this paper. Specifi-
cally, we show how (A.13) follows from a more general set of identities (D.18). To
our knowledge, these striking identities are new, just as their “quantum generaliza-
tion” (D.22) is. (We actually prove (D.22), and then obtain (D.18) by taking a
parameter to 0 that may be viewed as Planck’s constant.)

As a consequence, we obtain a novel and complete proof of Eq. (1.7) for the
above 2D Toda soliton t-functions. In Appendix A we also show that a suitable
specialization of the 2D Toda solitons gives rise to the solitons of the infinite (non-
relativistic) Toda lattice. More specifically, we introduce a parameter specialization
that leads to the Toda lattice solitons in the quite non-obvious form obtained in
[1]; the equation of motion for the latter is then immediate from (1.7). Appendix A
is concluded with a study of the relation between the above 2D Toda solitons and
the solitons of the infinite relativistic Toda lattice [ 15-17]. As far as we know, these
interrelationships are obtained here for the first time.

In Appendix B we obtain an elliptic generalization of the sequence of functional
equations encoding the 2D Toda equation of motion (1.9). It expresses the existence
of a class of solutions to (1.9) that can be arrived at via the elliptic systems
generalizing the hyperbolic ones—the systems denoted by IV, in our survey [3]
and lecture notes [ 18]. This surprising relation was recently established in [5] via
extensive use of the theory of finite-gap integration. OQur arguments are quite direct,
and do not involve this theory at all.

In Appendix C we first tie in a special class of KP soliton z-functions with the
I, and II,. systems of [10]. In the same spirit as in Appendix B, we then
demonstrate that the KP Eq. (1.6) admits a more general class of elliptic solutions
that can be obtained from the nonrelativistic elliptic Calogero—-Moser systems—the
systems denoted IV, in [3, 18]. Again, though this result is not new by itself, our
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arguments are short and simple, by contrast to [4]. As it turns out, the core of our
proof of the IV, /KP correspondence is a functional equation that can be tied in
with the N =2 specialization of the sequence of elliptic functional equations (B.16)
that expresses the IV,,/Toda correspondence. We have relegated the proof of the
general identities (B.16) to Appendix D, but Appendix C is essentially self-con-
tained. (For the elliptic function lore used in Appendixes B-D we refer the reader
to [19].)

In the final Appendix E, we reconsider the equal-n, case as regards algebraic
properties. Specifically, we show that the Lax matrix L from Section 5 can be
diagonalized by a matrix % that transforms an auxiliary diagonal matrix A into the
(dual) renormalized Lax matrix from Section 7, specialized to the equal-n, case. Just
as in our previous papers [ 10-12], the commutation relation between L and A4 is
an essential tool in this enterprise. As a result, we arrive not only at spectral results
already obtained in another way in Section 5, but also at explicit information that
is crucial to complete our study of the equal-n; case.

We conclude this introduction with some sketchy remarks on an eventual quan-
tum version of the results obtained in this paper. We first recall that the Poisson
commuting Hamiltonians of the Il ,(c, N) system can be quantized as commuting
analytic difference operators [20]. Now the eigenfunction transforms of the result-
ing quantum integrable particle systems are known for N=2 [3, 18], so the scat-
tering of the quantum particles can be compared to the scattering of corresponding
elementary quantum solitons, whenever the latter is believed to be known explicitly.
This yields agreement for the special case ¢ = /2, where the pertinent quantum field
theory is the sine-Gordon/massive Thirring model. For ¢ = z/2, however, there is no
sensible notion of fusion already at the classical level.

For c=n/nand n=3, 4, .., the quantum solitons are supposed to be described by
the (n—1)-component affine Toda quantum field theory, and accordingly it is
believed that there exist n — 1 distinct elementary solitons and antisolitons. We are
not aware of any analog of this picture in the context of the quantum II(c, N)
particle systems. More specifically, from this quite different vantage point it appears
unreasonable—if not nonsensical—to suppose that there is more than one type of
particle, depending on the value ¢ takes. In this connection it should be mentioned
that the mod n periodicity (1.17) holds true for classical elementary solitons when-
ever ¢ is a multiple of n/n. By contrast, for irrational ¢/z-values (which are of course
dense in the c-interval (0,7/2]) the elementary solitons ¢, have no periodicity
properties at all. Therefore, a putative quantum field version of the 2D Toda phase
space subset associated with such a c¢-value would involve an infinity of com-
ponents, and hence would give rise to infinitely many distinct elementary soliton
types.

Now from a purely mathematical viewpoint there is no reason to believe that a
reasonable classical field theory must have a non-perturbative quantum field ver-
sion. In fact, even the existence of a bona fide quantum field theory that yields the
sine-Gordon S-matrix has not been proved to date, and for the higher affine Toda
quantum field theories there are unitarity problems even at a formal level [13, 14].
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Even so, the S-matrix for two identical elementary solitons proposed by
Hellowood (given by Egs. (4.5). (4.6} in [14]) can be compared to the S-matrix
arising in the two-particle I1,(n/n) system. Indeed, the two-particle scattering func-
tion wla, . a . b;z) associated with the quantum Il system is studied in con-
siderable detail in [21], and combining Eqgs. (4.39), (443), and (4.45) in lc., we get
4 representation that can be compared to Hollowood's proposed S-matrix. Requir-
ing equality, one needs first of all w, =xn(ni) ', a =n, and 7 =6/2 (where £ and
€ are parameters from [ 14]). Then one would expect equality for b =n/n, but this
expectation is not fulfilled. On the other hand, using Eq. (4.14) in [21]. one sees
that one does get equality when b equals min ' +(ni) '+ 1). (This b-value is out-
side the unitarity region of the eigenfunction transform.)

Finally, we note that our classical particle picture of an s,-soliton may be trans-
lated to the quantum level by associating the quantum s,-soliton with the ground
state of the quantum Il 4(c. 1, 1) system—whenever bound states exist in the first
place. Now bound states do exist and are explicitly known, provided the (quantum)
coupling is suitably restricted, cf. p. 189 in [3]. Unfortunately, one would need far
more information on N =4 eigenfunctions than is currently available in order to
establish whether a quantum analog of fusion takes place for two ground state
H,qte, 1, 1) “molecules.” At any rate, the customary heuristic fusion procedure for
exact S-matrices associated with bound states is readily seen nor to lead from the
I, (¢) to the I1,4(2¢) S-matrix—in contrast to the classical scattering [ 11].

2. SOLITON r-FUNCTIONS: ASYMPTOTICS AND FUSION

This section contains some results on the above N-soliton r-functions that play
a crucial role later on. It consists of two parts. In the first we recall how the solitons
can be written as determinants of N x N matrices, and how this connection can be
exploited to arrive at the well-known features of soliton scattering. In the second
part we obtain a fusion property that will be shown to mirror the fusion properties
of 1. (¢) particles in later sections.

The connection between the solitons and matrices hinges on Cauchy’s identity for
the determinant of the matrix with elements

Ca=——L.  jik=1_..N (2.1)
oa;— by,
The identity reads
ICl=" J] exp By (2.2)
1<k N

Here, exp By is given by (1.2). so it equals the 2 x 2 principal minor of C involving
the indices j and k:

CXp Bﬂ\ = (",U C‘]\'k - (‘ﬂ‘ (’k)' (2.3)
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Cauchy’s identity entails that we can view z-functions of the form (1.1), (1.2) as
determinants of N x N matrices. Specifically, we deduce that 7 can be written

N
=Y S,(CD)=|1y+CD|, (2.4)
I=0
where
D=diag(exp ¢, ..., €xp &) (2.5)

and where S,(M) denotes the /th (elementary) symmetric function of M—the sum
of all /th order principal minors.

Next, we note that all principal minors of C are non-zero complex numbers, since
we require 4, ..., by to be distinct. Indeed, this entails exp B € C*—which is why
B is well defined (mod 27i) in the first place, cf. (1.2)—and each principal minor
is the product of such factors. This already suffices to determine the asymptotics of
the spectrum of the matrix CD when the quantities ¢; are of the form

&=+ vy, Revy< .-+ <Re, (2.6)

and ¢ goes to oo or —oo. Indeed, Theorem A2 in [10] entails that under these
assumptions the matrix CD(z) has simple spectrum for |z large enough, and eigen-
values A4,(1), .., Ay(2) satisfying

A1) ~exp(a;+tv;) [] exp(Bg), t=dm, 0=+, —. (2.7)
Sk <)

This formula amounts to a quite general “soliton scattering” result. Indeed, the
logarithm of the r-function satisfies

N
In (1) ~ Y In(1+exp(a* +1v))), t— +oo (2.8)
J=1
with
o =0+ 3. By, O=+, —. (2.9)
k<o)

Thus it reduces to a linear superposition of N one-soliton functions; the “velocities”
vy, .., Uy are conserved under the scattering, and the nonlinear interaction is solely
visible in a factorized shift of the “positions” a, ..., ay.

The asymptotics just described does not involve reality assumptions. Our
primary goal is, however, to study real-valued KP z-functions, and (more
generally) 2D Toda z-functions satisfying a generalized reality condition, viz.,

T_,=T,, veZ. (2.10)
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(Here and henceforth, a bar denotes complex conjugation.) Using (1.11) to
reparametrize a,, ..., by, we require from now on (1.18) and (1.19); moreover, all of
the hierarchy evolution parameters in (1.12) and (1.13) will be taken real from now
on. Unless explicitly indicated otherwise, we also take

N,y R, U< -+ <Ny, (2.11)
Im «fjo en”z, j=1,.,N. (2.12)

Clearly, these choices entail that (2.10) is satisfied. It also follows that the rhs of
(1.14) is positive, so we may and will take Bj, real-valued. Whenever the velocities
corresponding to an evolution parameter ¢ are distinct, the above asymptotics
applies for 1 —» + o0, yielding a shift of the positions Re 5}), j=1,.. N, that is fac-
torized in terms of pair shifts B.

Next, we focus attention on a fixed N-soliton r-function with (1.18), (1.19), (2.11)
and (2.12) in force. We aim to show that this function may be viewed as a limit of
M-soliton z-functions with

M=n+ .- +ny, c= - =cp=ce(0, r/max(n,, .., hy)) (2.13)

and M suitably chosen complex eta’s. To prevent confusion with the N real eta’s
(2.11) that have been fixed, we shall work with complex quantities 6, ..., #,, (which
are equal to 7n,,..,ny for M=N, of course). Moreover, we need a further
reparametrization that is essential in the sequel.

To detail the latter, we first take 0, < --- <, so that By is real-valued and
given by

Bj=—21n f(c;6,—0,), (2.14)
where we have introduced the positive pair potential
fle; x) = (1 +sin?(c¢)/sh?(x/2))", ce(0,n), x>0. (2.15)

Then we define ¢, ..., g4 € C by setting

exp(é}’) =exp(q;) n fle; 0,—6) (2.16)

kst j
and taking
Img;=Im¢&} enZ. (2.17)

In terms of these new variables, the 2D Toda M-soliton 7-functions with ¢; = --. =
¢ = c can be written

= ) eXp<Z(qk(t+,t_)—2ivc)>Hf(c;em—en), (2.18)

1=0 I={l1,., M} kel mel
I =1 n¢l
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where

gty 1 )=q;+2 ) sin(kc)(t, , exp(kl,)—1, _exp(—x6)),  (2.19)
k=1
whilst the KP z-function is obtained by taking v=0,7, =¢,7_=0.

With these formulas for real theta’s in place, we proceed to study analytic con-
tinuations of 8, .., 8,,. In view of (2.15) the only singularities that arise are poles
for 8,,— 0,, € 2niZ and square-root branch points for 8,, — 8, + 2ic € 2niZ. Thus, the
only ambiguities occurring in the analytic continuation of (2.18) to complex theta’s
are the signs of the f~products. (Note this sign ambiguity does not occur in any
product involving a pair 6,,, 8, for which 8,, — 6, = +2ic (mod 2zi)—for the simple
reason that the pair potential f(c; d,,— €,) then vanishes.)

The upshot is, that for a fixed g e C* the r-function has a finite, but multi-valued,
analytic continuation to §eC*, provided no pair of theta’s differs by 2nik, ke Z.
By contrast, the function exp B, diverges as ¢, — 0, — 2ic; this divergence reflects
the pole of the matrix element

C. = sh(—ic) exp(0;,—0,)/2
7T sh((0,— 6,)/2 —ic)

M(—c;0,—0,) (2.20)

arising for 6, — 6, — 2ic, cf. (2.3). In the formula (2.18) this divergence is absent,
since the reparametrization (2.16) ensures exp(&)), exp(¢R) — 0 for 8, — 6, — 2ic and
q;» qx fixed.

After these preliminaries we are prepared to specify the choice of 4, ..., 8,, that
will lead to the fixed N-soliton t-function, as will be demonstrated shortly. It reads

Ous ooy ae =+l +1=2k) e, j=1,,N, k=1,.,n, (221)

Thus the above proviso 0, — 6, ¢ 2ziZ is satisfied in view of (2.11) and (1.19). Fixing
an index set I, we now inquire when its contribution to 7, (2.18), vanishes. Intro-
ducing the index sets

L={n+ - +n, +1,.,n+ - +n_+n}, j=1.,N (222)

we assert that I yields no contribution unless each of I, ..., I is either a subset of
I or a subset of the complement /*.

To prove this assertion, let us assume some indices of I, (say) belong to I, and
the remaining one(s) to I°. This assumption entails there is at least one pair j, k €1,
with jel kel’, and |j—k|=1. But then 6,—6, equals 2ic or —2ic, so the
associated pair term in the f~product (2.18) vanishes Thus the assertion readily
follows.

As a result, the choice (2.21) guarantees that in (2.18) we need only sum over all
index sets of the form

Lo Ly =Iky, k), 1<k < <k<N, j=0,1,.,N. (223)
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Therefore, introducing
QJE Z q,', j=1,..., N, (224)
il

we can rewrite (2.18) with (2.21) in effect as

T,= ) Y exp(Z(Qj(t+,t)—2ivcj)> [T fle;0,—6), (225)

. jelJ ieI(J)
|| =m J&I(J)

where we have

Q)(14,1.)= 0,42 Y Sin(ke)(t,, , exp(kn) — 1, _ exp(—rn))).  (226)

xk=1

cf. (2.19), (2.22).
We now invoke the “fusion identity” (D.3). It entails that the product in (2.25)
equals the positive function

5 o 2 ) 1/2

I <sh2(n, nk)/2+8{n2(cj+ck)/2> (2.27)
oy \Sh?(1; —71,)/2 +sin’(c; — ¢,)/2

k¢J

up to a sign that depends on how we have continued from the region 8,,< --- <8,
(where the product in (2.25) is positive) to the § e C* defined by (2.21). We choose
this continuation such that all of these signs are positive. It is not immediate that
this is feasible, so we now digress to describe a continuation path with this
property.

To this end we start from # e R¥ defined by (2.21) with ¢ replaced by —ie, and
&> 0 chosen small enough so that 8,,< --- <#,. (In view of our standing assump-
tion (2.11) this is possible.) Thus we get N theta-clusters around 7, ..., 7,. Now we
rotate each of these clusters over 7/2 and simultaneously scale ¢ T ¢, so that we wind
up in the point (2.21). Along the path just detailed all of the functions f(c; 6,—6;)
that occur in (2.25) are non-zero, so the product in (2.25) equals (2.27) up to a sign
that is independent of the choice of #. But by taking #, < --- <#, we can ensure
that all of the pertinent f(c; 6,— 6;) stay close to 1 (recall (2.15)), so this sign is
positive, as advertised.

The upshot is, that we may replace the product in (2.25) by (2.27). Comparing
the result to the given N-soliton r-function, we need only choose

exp(Q,) =exp(&]) [ exp(By/2) (2.28)

kst j
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(with exp(Bj) now given by (1.14), of course) to arrive at the desired equality.
Recalling (2.12) and noting positivity of the product, it follows that Re Q, is
uniquely determined and Im ¢; € #Z can be chosen such that (cf. (2.24))

ImQ,=3 Img,=Im¢&? (mod 27). (2.29)
iel;

In summary, we have achieved our goal: We have shown that N-soliton 7-func-
tions with (1.18), (1.19), (2.11) and (2.12) in effect may be obtained from M-soliton
r-functions satisfying (2.13). From the viewpoint of z-functions the above
reparametrization and the associated fusion relation may seem quite unnatural. But
to connect the above soliton 7-functions to integrable particle systems both
ingredients are indispensable, as will become clear shortly.

3. IIgxer PARTICLES VS ELEMENTARY SOLITONS

As we have seen in the previous section, the r-function for the elementary soliton
case (1.20) can be written as a sum of the symmetric functions S; of the Nx N
matrix CD, cf. (2.4). More specifically, the Cauchy matrix is given by (2.20) in this
case, and after the reparametrization (2.16) the diagonal matrix D (2.5) satisfies

D(6, q),;=exp(q)) [ flc;0,—6,) (3.1)

k)

when we take the evolution parameters and v equal to 0.

As a result, we have actually arrived in a few steps at the N independent
Hamiltonians in involution that define the hyperbolic relativistic Calogero—Moser
systems of [1]. Indeed, viewing from now on 6, ..., 8y and ¢,, ..., ¢ as canonically
conjugate variables, these are simply the symmetric functions

B sin?(c) 12 B
S, 9)= Y » exp<z q,-) I <1 +msh2(6m——9,,)/2> , I=1,.,N (32)

Ie{l,.., iel mel
11 =1 n¢l
of the reparametrized matrix CD. (The Poisson commutativity of Sy, .., Sy is not
supposed to be obvious; it boils down to a sequence of functional equations proved
in[1].)

Now at first sight the corresponding commuting flows seem to have no relation
whatsoever to the commuting flows associated to the soliton hierarchies. Indeed,
the latter are encoded in the linear dependence of &; on the hierarchy “times”
ty,1,,.. for the KP case, and ¢, ., 1, 4, .. for the 2D Toda case, cf. (1.4) and
(1.10). The generating Hamiltonians are clearly given by

N
H, .(0)=2k 'sin(kc) Y exp(xxf), «k=1,2, ., (3.3)

Jj=1
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for the Toda case, and by

. (34)

for the KP case.

The Hamiltonians just defined generate fiee flows, which manifestly commute. By
contrast, the N solitons interact: For asymptotic times their positions are shifted as
compared to a linear superposition of N freely moving solitons. We have already
recalled the character of the interaction in a quite general setting, cf. the first part
of Section 2. For a special equation in the hierarchy the notions of “time” ¢ and
“position” y refer to special hierarchy evolution parameters, depending on the case
at hand. For t— + oo the y-dependence of the z-function is then carried by the
quantities «; in (2.6)—(2.9); it is of the form «; = oc}’ + yu;. Thus the quantities By /u;
can be interpreted as position shifts.

To model the solitons as point particles, one should therefore construct interact-
ing hamiltonian dynamics, giving rise to an evolution of canonical particle positions
xy(2), ..., xy(t), whose long-time asymptotics exhibits the same factorized shifts as
the soliton positions. Now for the case at issue there are obvious candidates for
such particle positions. Indeed, let us write the eigenvalues of the matrix CD as
exp X, ..., eXp X. Then we clearly have

> exp <z x,-> =S,0,q), I=1,.,N, (3.5)

iel

with S, given by (3.2). The crux is, that since the functions S, ..., S Poisson com-
mute, the functions x,(6, g), ... x5(0, ¢) Poisson commute, too, and hence may be
viewed as canonical particle positions. By construction, they have a highly non-
linear (interacting) dependence on the hierarchy times when the quantities
q.(1), ..., gn(1) evolve linearly (freely) as specified above, and this interaction makes
itself felt via a factorized shift of the asymptotic particle positions, as desired.

Taking the picture just sketched for granted, it should be emphasized that at this
stage it is fully unclear that one can view the “time” dependence of the position
vector x(1,,1,,..) for the KP case (say) as being generated by commuting
Hamiltonians H,(x, p), H.(x, p), .., where p,, .., py are variables canonically con-
jugate to x,, .., Xy. As it happens, though, this is not only true, but the pertinent
Hamiltonians can actually be written down in terms of the above matrix CD: One
can take

H, (c;x, p)=2x""sin(xc¢) Tr(C(x) D(x, p))~, k=1,2, .. (3.6)
for the KP case, whilst for the 2D Toda case one needs

H, .(c;x,p)=HJc;x, xp), *r=12,. (3.7)
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Here, ((x) is the matrix (2.20) (with # — x) and the diagonal matrix D(x, p) is
given by (3.1). Since the power traces of a matrix can be written as polynomials in
its symmetric functions (and vice versa), the involutivity of the functions S, ..., Sy
(3.2) amounts to that of the Hamiltonians H,, .., Hy (3.6).

We shall presently recall how this remarkable state of affairs (self-duality) comes
about. While doing so, we have occasion to introduce various objects that are
indispensable for the particle-soliton correspondence in the general case (1.18),
which we aim to establish in several steps. Before embarking on this additional
machinery, however, we can already explain why and where a seemingly straight-
forward one-step generalization of the above ideas to an even more general corre-
spondence of N solitons with arbitrary c;-values and an integrable N-particle
system with the same scattering breaks down.

This obvious generalization proceeds by first substituting (1.11) in the above for-
mulas (2.1)—(2.9). Specializing to the KP case for convenience, we also put

exp &, =exp <qj+2 > 1, sin(xc)) exp(;cm)) [T exp(—B/2), (3.8)

x=1 k% j

where exp(B) is given by (1.14). Then we may once again view ¢, .., ¢y and
My, -» N as canonically conjugate variables, and the 7,.-dependence of ¢(1,, t,, ...) is
now governed by free Hamiltonians

N
Y sin(xc;) exp(xm;), k=12, .. (3.9)

J=1

HJc), oy n)=2x""

Moreover, when we write the eigenvalues of CD as exp x,, ..., €Xp Xy, then their
asymptotics once more models the scattering of these more general solitons.

So why does’nt this yield a starting point for setting up a soliton-particle corre-
spondence for the case of general c;-values? The answer to this question is quite
simple: The symmetric functions S,(¢y, ... ¢n:#,¢q), I[=1,.., N, of CD do not
Poisson commute in this general case, so it is already inconsistent to view x, ..., Xy
as canonical particle positions, cf. (3.5). Thus it does not even make sense to ask
whether the time dependence of x(r,,17,,..) is governed by commuting
Hamiltonians H, (¢, ... ¢y X, p), K=1,2, ...

After this brief digression on the case of arbitrary c¢;-values, we return to the case
of equal ¢;-values, and recall how the Hamiltonians (3.6), (3.7) arise. To this end
we introduce the self-adjoint matrix (Lax matrix) with elements

L(c; x, p)j = eje, exp(—x;) M(c; X;— xi). (3.10)
Here, the function M is given by (2.20) and the vector e reads

e;(e; x, p) =exp((x;+ p;)/2) V2, (3.11)
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where we have introduced the jth potential function

Viie;x)= [T fle;x;—xp),  flx)=(1+sin*(c)/sh*(x/2))". (3.12)

k#j

Thus, L can be obtained by a similarity transformation from the matrix
C(x)" D(x, p). (Here and below, T denotes transposition.) Correspondingly, (3.6)
may be replaced by

H,. =2k 'sin(kc) Tr L*, k=12, ., (3.13)
and, more generally, the Toda Hamiltonians (3.7) can be written
H, ;=2 'sin(kc) Tr L%, k=1,2,., 6=+, —. (3.14)

(For § = — this relation follows from the fact that L(x, p) ' is a diagonal similarity
transform of L(x, — p)7, ¢f. Lemma B2 in [11].)

Now the key to establish the connection between the particle variables x, p and
the elementary soliton variables 6, ¢ is a commutation relation involving the Lax
matrix L and the auxiliary matrix

A(x) = diag(exp xy, ... eXp Xn). (3.15)
It reads
coth(ic)[A, L]=2e®e—AL—LA (3.16)

and follows readily from the definitions. It can be used to show that for all (x, p)
in the phase space

QINY={(x, p)e RN |xy< .- <xy} (3.17)

the spectrum of L is non-degenerate. Now L is not only self-adjoint, but actually
positive on (N). (Indeed, from Cauchy’s identity one infers that the principal
minors of L are positive.) Thus, for a fixed (x, p) e Q(N) the spectrum of L can be
written as

o(L)={exp 0, ..., exp On}, Oy< - <0. (3.18)

Next, the fundamental commutation relation (3.16) can be exploited to prove the
existence of a unitary matrix U such that one has

UL(c; x, p) U*= A(0) (3.19)
UA(x) U*=L(—c; 0, q) (3.20)

for certain real numbers ¢4, .., gn-
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It follows from straightforward linear algebra that in this way one obtains a
bijection

D:Q(N)=>Q(N),  (x,p)—(6,9) (3.21)
where (N) is the “elementary soliton phase space”
QN)={(0,q)eR*M | Oy< ---6,}. (3.22)

Moreover, this map is involutive: It equals its own inverse. (This self-duality
property can be gleaned from (3.19), (3.20); notice also the symmetric roles of L
and A4 in the commutation relation (3.16).) It is true as well, but harder to prove,
that @ is a canonical transformation when Q and € are equipped with the sym-
plectic forms

N
w=Y dx A dp, (323)

J=1

@

d6, A dg,. (3.24)

1

Iz

J
(Thus one has &*d =w.)

In fact, @ ! is intimately related to the wave maps (Mpller transformations) for
the commuting I, dynamics, and this relation is a key ingredient in our proof
[10] that @ is canonical. (To ease comparison with [ 10] and other previous work,
we should add that we employed different orderings and variables g, 8, 4, § instead
of the variables x, p, g, 0 used here.) The proof of [10] involves considerable
technicalities; for a more leisurely account of the relation of ¢ to scattering theory,
and its resulting canonicity and intertwining properties, we refer to Section 5.2 of
our recent lecture notes [ 18].

From the above features of @ it is clear that it serves as an action-angle map: It
linearizes the flows generated by Hamiltonians of the form

H,=Trh(ln L), (3.25)

with 4 a real-valued smooth function. Indeed, one has

N
(H,o® )0, 9)=7, h(6;) =H,(0), (3.26)
Jj=1
so the nonlinear flow
(x, p) > (x(1), p(1)) (3.27)

generated by H, maps to the linear flow

0, ) —(0,q(1)), q(t)=q;+th'(0), j=1,..N (3.28)
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generated by H,. Hence, this holds true in particular for the choices
hy. o (1) =2k """ sin(kc) exp( +xu), k=12, .. (3.29)

which yield the above interacting Hamiltonians H, ,(x, p) (3.14) and free
Hamiltonians A, ,(6) (3.3).

We are now prepared to tie in the above with 7-functions of the form (2.18),
(2.19), taking M — N and

Oy< -+ <0y, geRM. (3.30)
Indeed, we deduce from the above developments that we may write
Ty=|ly+e 2 L(~c;0,q(z,, 1)) (3.31)

Therefore, recalling (3.20) and (3.15), it follows that In r, may be viewed as a linear
superposition of N “single-particle” terms:

N
Int, =Y In(l+exp[x;(r,,1._)—2ivc]), (3.32)

J=1

the 7, ; evolution being governed by the particle Hamiltonian H, ,(x, p) (3.14).

Having described various mathematical aspects of the Il (¢, N) particle system
and its relation to the N-soliton z-functions with (1.20) and (3.30) in effect, we con-
clude this section with a brief overview of physical features. First, let us note that
the particles are governed by repulsive forces. Indeed, since the Hamiltonian

N 1n2 172
H(cix,p)=H, , +H, =4sin(c) ¥ ch(p,) [] <1 +“‘Mﬁ> (333)

2y
Je1 il sh*(x; — x;

is conserved, the particle ordering x, < --- <X, is invariant under the commuting
flows. The long-time behavior of the flows generated by the hierarchy Hamiltonians
H,. ;s (and, more generally, an extensive class of commuting Hamiltonians) exhibits
the conservation of asymptotic momenta and factorized asymptotic position shifts
characteristic of soliton collisions. For instance, for the Hamiltonian H (3.33) one
obtains in the same way as already sketched for solitons in Section 2

p ; ()~0, t— +oo, (3.34)
1

N-j+

x5 (D~g e+ drsin(o) SM@-)i‘%(Z - z)ln<1+

N—j k>j k<j

sin’(c) >
sh2(0,— 6,)2)°

t— +o0. (3.35)

Here, (6, g) is the image of (x(0), p(0)) under the action-angle map & (3.21).
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The physical correspondence can be further enhanced by introducing a notion of
soliton space-time trajectories. This renders it possible to ascribe a position to a
soliton even in the regions where the interaction takes place (revealing in particular
that solitons repel each other), and the trajectories coincide with the soliton posi-
tions for asymptotic times—where the notion of “soliton position” is unambiguous.
(As mentioned before, “space” and “time” refer to special equations, cf. [1, 2, 3],
but much of the analysis involved in a detailed study of the trajectories applies very
generally, cf. Section 7A in [11].) Thus one is led to a picture of solitons as defor-
mations of an elastic medium, which hides an underlying point particle motion.

4. BOUND PARTICLE-ANTIPARTICLE PAIRS VS s,-SOLITONS

In order to handle the s,-soliton case, it is expedient to begin this section by
detailing how Il ,(c) particles, antiparticles, and bound particle-antiparticle pairs
(with ce€(0,7/2)) correspond to elementary solitons, antisolitons, and breathers.
To this end, we analytically continue some of the particle positions, x; — x; + in,
and note that this has the effect of turning the repulsive pair potential (1 +sin?(c)/
sh*(x;—x,)/2)"? into the attractive potential (1 —sin*(c)/ch?*(x;—x,)/2)"* when-
ever only one of x;, x, is continued. Accordingly, the above Hamiltonians H, s(x, p)
(3.14) turn into real-valued commuting particle-antiparticle Hamiltonians.

Taking first N =2, an inspection of the Hamiltonian

H=4sin¢ i ch(p;)(1 —sin*(c)/ch?(x, —x,)/2)'2 4.1)

J=1

(obtained from H (3.33) by taking x, — x, + in) reveals the presence of a bound
state subset of the phase space (1, 1) = R* It is characterized by H(x, p) <4 sin c.
(Indeed, since H is conserved, this condition yields an upper bound on the distance
|x,—x,|.) Moreover, employing sum and difference variables, one easily sees that
the 2-dimensional submanifold {x, =x,, p;=p,} is left invariant by the H flow
(and by all of the H, ; flows). This subspace corresponds to bound states with
maximal binding energy, and no oscillation takes place in that case.

The general case where N, particles and N _ antiparticles are present can be
described as follows [11]. The phase space

QN N )={(x, p)eR¥|xy< -+ <Xy, 11, Xy, < - <X}, N=N,+N_
(4.2)

splits up into invariant subsets corresponding to various scattering channels, and an
exceptional set of codimension one (separatrix). The channels correspond to a long-
time behavior of freely moving particles and antiparticles, together with / bound
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pair.s; here, one has /€{0,.,min(N,,N )}, and all possibilities occur. Once
again, scattering theory gives rise to asymptotic positions and momenta

(@15 s o, 005 0 05 ), (g5, s g5, 05, 0, ) k,=N,-I k_=N_-]
(4.3)

describing the unbound particles and antiparticles. Furthermore, the / bound pairs
can be described with complex momenta

(0] —i5)/2,  6°eR, d;e[—-2¢0), j=1,.,1 (44)

Here, the minimum value 6,= —2¢ gives rise to maximal binding energy; in that
case the two positions X;, x, involved become equal for asymptotic times. To
specify the center of mass positions and oscillation phases one also needs variables
qj’.’ eRand y;e(—n, n],j=1, .., [; the latter phases are not needed for ground state
pairs—a feature to which we return at the end of this section.

Just as for the pure soliton situation, a key tool for obtaining these results is the
commutation relation (3.16), or, more precisely, its analytic continuation to the subset
of C¥ x R" that corresponds to Q(N, , N_) (4.2). Then the matrix 4 turns into

A(N,, N_;x)=diag(exp x,, .., €Xp Xy, , —€XP Xy, 4 1,.., —€XPXy) (4.5)

and the new Lax matrix L(x, p) is no longer self-adjoint. But it is still pseudo-self-
adjoint with respect to the indefinite metric diag(1ly,, —1x_), and this key feature
can be exploited to obtain spectral information reflecting the above decomposition
of Q(N_,N_).

Specifically, L(x, p) is not diagonalizable precisely on the separatrix, whereas on
the [-pair component L(x, p) has simple spectrum and one has

L ~ diag(exp 65, ..., exp 05, exp(8; —i0,)/2, ... exp(0] +i3,)/2, exp 07, ..., exp 0 )
= diag(exp 0, ..., exp Oy). (4.6)

(Recall ~ denotes similarity.) Provided d,, ..., d,> —2¢, the similarity can be effected
by an invertible matrix # such that the corresponding transform of 4 (4.5) becomes
sh(—ic)
sh((6,—0,)/2 — ic)

(PAP ") =exp(—0,/2) exp(0/2) exp(qyx) Vi(0). (4.7)

Here, 0 e CV is defined by (4.6), and g e CV satisfies

(@1s o AN =G5, e @5, Q5+ 171 0 47— 170 G55 0 G5 ) (modim). (48)

(The iz-multiples are uniquely determined mod 2iz, cf. [11], p. 904. For brevity we
neither specify the multiples nor the square-root conventions in ¥(6), but we shall
return to the phase of exp(qx) V() shortly.) The map

@ (x, ) (65, s 05, 0%, 81 05, s 0543, s Qi 5 03 s P12 405 o k) (A9)
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from the /[-pair component to the asymptotic variables may be viewed as the
analytic continuation of the action-angle map & (3.21) from the “pure particle”
case. Accordingly, one has

N N
D* <~ > do; A dqj> = Zl dx; A dp;, (4.10)

Jj=1 J=

where the complex coordinates §,, ..., ¢ are defined by (4.6) and (4.8). (Note that
in terms of the asymptotic (action-angle) variables the symplectic form is real and
canonical.) Moreover, one deduces

N
H, .(x, p)=2x""sin(kc) Tr L(x, p)=* =2k ~"'sin(kc) Y, exp( +xb). (4.11)

Jj=1
In view of (4.6), the rhs can be rewritten

ko

A, .=2"" sin(xc) ( X exp(£x0;)

J=1

! k.
+2 Y cos(kd,;/2) exp( £x67/2)+ Y,

j=1 j=1

exp( ix&j)), (4.12)

so it is real-valued, as announced in the first paragraph of this section.

With these results in hand, we are prepared to return to the above N-soliton
r-functions. To each point (x, p) in the [-pair component of Q(N,.,N_),
N, +N_=N, we can associate a r-function by substituting

a;=exp(b; — ic), b;=exp(0;+ic), (4.13)
o sin’ ¢ 12
xp(¢)) =explg) k#,<1 +shz(e,.-ek)/2> ’ (414

with (6, g) € C*" now defined via the asymptotic variables ®(x, p), cf. (4.6), (4.8).
The unspecified iz-multiples in (4.8) then combine with the unspecified sign conven-
tions for the square roots in (4.14) to yield phases satisfying

exp(&)) e (0, 00),  j=1,..k,,
exp(&p, L )eC*  j=1,.,1 (§;> —20), (4-5)
exp(&y_y_ . )e(—00,0), j=1,.,k_,

of Eq. (242) in [11].
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In this way we obtain r-functions that may be transformed to the (x, p)-variables
via @ !, yielding

Ny
Int,= Y In(l+exp[ —2ive+x;(t,,1_)])
j=1

N
+ > In(l—exp[ —2ve+x;(t,,1)]) (4.16)

j=N,+1

as a generalization of (3.32). Here, the 2D Toda evolutions are governed by the
real-valued Hamiltonians (4.11), and the z-functions thus associated to a point in
the -pair component of Q(N_, N_) consist of k, solitons, &k _ antisolitons, and /
breathers (bound soliton-antisoliton pairs). Upon specializing to concrete equa-
tions, with corresponding notions of “space” and “time,” the long-time asymptotics
of such r-functions leads to a picture of widely separated, freely evolving, one-
soliton, one-antisoliton, and one-breather solutions—the interaction being solely
visible in factorized position and phase shifts.

We have filled in the analytical details of this picture for the special case of the
sine-Gordon and modified KdV equations in Section 7B of [11]. By contrast, in
this paper we are not presenting a mathematically and physically complete discus-
sion of z-functions obeying (2.10) and their connections to (real) finite-dimensional
symplectic manifolds and commuting hamiltonian flows. (Note, for instance, that
(4.16) gives rise to 7-functions satisfying (2.10) for a/l points of Q(N,, N_), in par-
ticular on the separatrix, where the representation (1.1) is no longer valid.)

At this point we should also repeat that we take c € (0, z/2) throughout this sec-
tion, whereas for the sine-Gordon and mKdV equations one needs ¢ = z/2. Observe
in this connection that the repulsive II(¢) system of the previous section is non-
singular for ¢ ==/2, and invariant under ¢ — = — ¢. By contrast, for ¢ =n/2 the par-
ticle-antiparticle interaction becomes singular for coinciding positions, cf. e.g. (4.1).

We now turn to establishing the connection between the fusion procedure for the
s,-case (cf. Section 2) and special points in the phase space Q(N, N) of the
I1.o(¢c, N, N) system. Thus, we choose ¢, = --- =cy=2ce (0, 7). Of course, it is
immediate from the previous section that the N-soliton 7-functions can then be tied
in with the I (2¢, N) particles. It is not at all immediate, though, that the latter
can be associated with a 2/N-dimensional invariant submanifold of the II (¢, N, N)
system—and this is the picture that generalizes to the r-functions with (1.18) in
effect.

Therefore, we now detail this relation between the Il (2¢, N) and II (¢, N, N)
systems. The invariant submanifold of 2(N, N) reads

{(xa p)EQ(N’ N)Ixj=xj+N’ pjzpj-)-Na .]= 17 - N} (417)

It consists of N particle-antiparticle pairs in their ground state, which do not
oscilllate and whose ordering xy < --- <x; remains fixed under all of the commuting
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flows. On thi~s manifold—which can obviously be identified with Q(N) (3.17)—the
Lax matrix L(x, p) has spectrum

o(L) = {exp(6% + 2ic)/2, ..., exp(05 — 2ic)[2},  O4%< --- <%  (4.18)

Clearly, the matrix at the rhs of (4.7) is ill defined in this case: One obtains poles
for 0, — 0, _,=2ic. But it is possible to get rid of these singularities. Indeed, there
exists a renormalized invertible matrix £ effecting the similarity (4.6) such that the
“dual Lax matrix” 242" takes a different and non-singular form (cf [11],
Chapter 5).

In Section 7 we shall have occasion to define such a non-singular dual Lax
matrix in a far snore general setting. Here, we observe that (4.7) and Cauchy’s
identity entail

VEZERNE DY CXP<Z q,-) [Tf(c;0.—6)), (4.19)
I {ll, W’IZN} iel l§§
Il= J

where the signs of the terms are governed by the iz-multiples in (4.8) and square-
root sign conventions that we did not specify. The point to be made, however, is
that the rhs has a finite limit when one lets 6, —6,,_, — 2ic (which already
indicates that the above poles can be transformed away). Indeed, performing these
limits is tantamount to the fusion procedure from Section 2, with n,= --- =ny=2
and the 7, in (2.21) equal to 67/2, j=1, .., N.

To be quite specific, we recall the pertinent limit yields S,, — 0 for m odd,
whereas

Sy(Pa?~'y> Y exp <Z Qj> [T f2c; (87 -62)/2), [=1,..,N.
J<A{l, .. N} NjeJ

N 157 (4.20)

Here, we have Im Q;=in(mod 27i), j=1, .., N, which yields a sign (—=)* for each
term in the sum. This should be the case, as this agrees with the signs obtained from
the definition (4.5) of the matrix 4 = A(N, N; x): From

N
|4+ 1,5 =Y (A*—exp(2x,)) (4.21)
i=1
one deduces
0, m odd,
Suld)=4(=) % exp<z x,) m=2l, I=1,.,N. (422)
Jc{l,...,lN} NjeJ
I =

As a further preparation for the following sections, we review one more crucial
feature of the l-pair component 2, of (N, N) with /> 0. When one tries to extend
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the action-angle map @: (x, p) (6, g) to the subset of 2, for which one or more
pairs are in their ground state, one finds that the variables (6, ¢) are no longer
appropriate. In order to obtain a real-analytic extension, one needs to trade the
internal pair coordinates J, y for harmonic oscillator variables u, v. Then ¢ is a func-
tion of ¥ =u? + v% and y becomes the angle that describes the location on the circle
r>0, with r | 0 corresponding to § | —2ec.

In terms of the new variables, the map @ extends to a canonical diffefomorphism.
Moreover, the Hamiltonians H,. ; (4.12) become functions of the external (center of
mass) momenta ¢ and the 7, and by inspection one sees that the dimension of the
span of their gradients reduces by 1 for each r; becoming 0. Since @ is a symplec-
tomorphism, this holds for the Hamiltonians H, ; on (N, N) as well; in particular,
on the subspace (4.17) this dimension equals N.

Later on, we shall reobtain the latter result from [11] in the course of handling
the s,-case; it arises by simply taking n=2. We shall however employ harmonic
oscillator variables inspired by the study of Sutherland type systems that we under-
took in [12]; the resulting subset of C*V intersects Q(N, N) solely in (4.17). This
is one reason why we are not going into further details (in particular as regards the
above phase factors). These details turn out to be rather intricate and cannot be
avoided when one seeks a comprehensive and rigorous view of the physical state of
affairs on all of Q(N, N).

In the next sections, however, our aim is rather to obtain generalizations of the
subspace (4.17), clarify their local structure, and tie them in with the N-soliton
7-functions with (1.18), (1.19) in force. In this general setting we do not know
whether these subspaces are embedded in symplectic manifolds with 2(n, + --- +ny)
real dimensions, equipped with (n, + --- + ny) independent real-valued commuting
Hamiltonians—which would be the analog of the picture in [ 11] concerning (4.17)
vs Q(N, N).

5. THE s,-SOLITON CASE

Our account in this section clarifies to a large extent how solitons of type s, (ie.,
with ¢, .., cy equal to nc ce(0,n/n)) arise in the complexification of the
I,.(c, nN) system. However, it leaves open some technical questions, whose
detailed answers are postponed to Section 6 for N=1, and to Section 7 for N> 1
(using also Appendix E in the latter case). This approach enables us to bring out
the main points unobscured by technicalities, and moreover avoids a repetition of
arguments.

A key role in the following is played by a subspace 2 of the complexified phase
space C*", which may be viewed as a copy of Q(N) (3.17). Specifically, choosing
(X, P)e Q(N), so that

Xy<---<X,, PeR" (5.1)



INTEGRABLE PARTICLE SYSTEMS 251

we define (x, p) e 2y = C™ x R™ by setting

Xij—tynsk =L X;+2mi(n—k)]/n, Jj=1L.,N, k=1,.,n, (5.2)
Pi-tynek=PF; Jj=1..N, k=1,..n (5.3)

Due to the branch points in the elements of the Lax matrix L(c; x, p) (given by
(3.10)—(3.12)), there is no unique continuation of L and the associated
Hamiltonians from the (real) Il.(c, nN) phase space to the submanifold Q.
However, we may and will fix the ambiguities by requiring that the functions
Vi3(c; x), ... VI3(c; x) be positive in the point (5.2). To be more specific, we are
claiming that there exists a path from a point in 2(»nN) to the point (5.1)-(5.3) in
Q,, for which the analytic continuations of the latter yield positive numbers.
To prove this claim, we exhibit such a path: We choose

Xj-nn+xl@)=[X;+2r(n—k) a(¢) e?]/n, Py-nnel@) =P (54)

where ¢ € [0, z/2], and a(¢) increases from ¢>0 to 1 as ¢ goes from 0 to z/2. In
view of (5.1), we may and will choose ¢ such that (x(0), p(0)) e Q(nN). Now it is
clear that V3(c; x(¢)) is positive for ¢ =0, n/2, and we also have V}*(c; x(0))>0
for all /e {1, .., nN}. Moreover, Vi(c; x(n/2)) is non-zero for ce (0, n/n), so the
sign of V}*(c; x(x/2)) is constant on this c-interval. Since all of the pair potentials
fle; x;—x;) stay close to 1 along the path (5.4) for ¢ very small, it now follows that
the continuations of V2, ..., V3 are positive in (5.2), as claimed.

Accordingly, we now obtain a well-defined Lax matrix on €, and Hamiltonians
H, s(c; x, p) on 2y given by (3.14). At this point it is far from clear that all of these
Hamiltonians are real-valued and that their flows leave 2, invariant, but we are
going to prove that this is true. Let us begin by observing that the invariance
property amounts to the associated hamiltonian vector fields (symplectic gradients)
being tangent to £2,. Now from the definition (5.2), (5.3) of Q, one sees that a
vector field V is tangent to @y if and only if

V,eR, [=1,..,2nN, (5.5)

V(j~1)n+k= V(j—1)+1~ VnN+(j—l)n+k= VnN+(j*1)n+lv
j=1,.,N, k=2,.,n (5.6)
Thus we have to show that on £, the Hamiltonians H,. s and their gradients are
real-valued, and that the gradients have the symmetry properties (5.6).

In fact, we will prove a far stronger result: On Q the gradients not only satisfy
(5.6), but one also has

H,sc,nN;x,p)=H, s(nc, N;X,P), «k=12,., é=+,—.  (57)
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(This entails in particular real-valuedness of the lhs, as announced.) Combining
these two properties with (5.2), (5.3) and the chain rule, one deduces

OH, s(nc, N; X, P)/0P;=n8H, c,nN;x, p)/Op; 1ynsi) k=1,.,n (58)
0H, s(nc, N; X, P)/0X;=0H, s(c, nN; X, P)/OX; _1yn+)s k=1,.,n (59)

Thus the hamiltonian vector field associated to H, s(c¢, aN) is not only tangent to
Q,: It is related to the hamiltonian vector field associated to H, s(nc, N) in such
a way that the flows on 2, and Q(N) coincide.

In this section we present a quite direct proof of (5.7) and the gradient sym-
metries (5.6) for the special case x=1,0= +. Combining this result with the
known asymptotics of the H, , (nc, N) flow, we obtain the identities (5.7) for the
general case. The relations (5.8) and (5.9) are then highly plausible, but they do not
rigorously follow, unless one has previously proved (5.6), or, equivalently,
invariance of 2, under the H, s(c, nN) flow.

Unfortunately, our direct proof of (5.6) for k =1, § = + does not appear to admit
an easy generalization. We prove invariance of Q, by other means in Section 6
for N=1, and for N> 1 in Section 7—alongside with the arbitrary-n; case. On the
other hand, the considerable analysis involved in completing the proof is not
necessary for understanding how the fusion property of the r-functions obtained in
Section 2 fits in, and how the variables Q; in (2.26) should be chosen. At the end
of this section we shall therefore detail these kinematic features, before completing
the dynamical picture in later sections.

Turning now to the proof of (5.7)—(5.9) for k=1, = +, we collect some iden-
tities that readily follow from Lemma D.2. To start with, (D.5) entails

nol sin? ¢ 12 sin? ne\ 2
—_— =\1+— , 0. 5.10
kl:[()(l +sh“(a+i7rk/n)> ( + sh? na) 4> (3.10)

From this we obtain

nol sin’ ¢ Y2 rsh? a + sin*(ne) sh? afsh? na
B\ e viam) =

1/2
5 — " >0, (5.11
a+ink/n sh®a +sin- ¢ ) 4 ( )

k=1

so taking a |0 yields

T sin®e \'? _sinne
u B (0, m/n). 5.12
kl;ll < Sinz(rck/n)> nsinc’ ce(0, n/n) ( )
Now from (3.14) we have
2 i nN { Sinz c 12 i
H, .(c,nN;x, p)=2sin(c) Z_,l exp(p,) "!1( +m) (5.13)

Hy o (ne, N: X, P)=2sin(n) 3. exp(P) [ <1+ sin”ne >U2 (5.14)
1, + ne, s Ay - 1 ¢ = p i ot ShZ(X,——Xk)/Z . .
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Thus from (510} and (5.12) we obtain (5.7} and (5.8} for v = 1. d = +. Moreover,
using the a-derivative of (5.10) and noting that the a-derivative of {5.11) converges
to 0 for ¢ |0 (indeed. the rhs of (5.11) 158 even in a), we also deduce (5.9) for k=1,
A= 4.

Next, we aim to explicitly determine the spectrum of the Lax matrix on Q4. To
this end we begin by recalling that the H, _(c.nN) flow is isospectral, ie., the
spectrum of

L,=L expitH, ,ic,nN)) (3.15)

does not depend on 7. Therefore, we can combine the known 7 — > asymptotics of
the H, ,{ac, N) flow on Q(N) and the equality of this flow and the H, | (¢, nN)
tflow on 2, to obtain a(L , ) and hence a(L,).

The 1 — x asymptotics of the H, |, (ne. N) flow can be read off from Theorem 34
in [10] (with f=pu=1, z=inc, g, - X, P and an extra scale factor 2 sin{nc)). It
reads

P(ty~n, 1—x, (5.16)

, 1/ / sin’{ney
X(~y,+2s Jexpy, +=1 Y — )l (1 —————-———> 1—x, (517
A~y sin{ne) exp iy, 2(\/.;. Y | +sh“(r[,—ri;)s"‘2. - o, (3.17)

S faj
where j=1, ... N, and where the asymptotic positions and momenta satisfy
nv< .- <ny,  veRY (5.18)

Combining now the above definition of L on 2, with (5.15)-(5.18), we obtain

L, =lm L,=daglexp(n)E, ..expiny) E) (5.19)

! X
where E is the n x n matrix with elements

B sin ne
T nsinge —mlk —ny

E, k. i=1,..n ce(0,nn) (5.20)

Thus, to determine o{L , ) we need only obtain o(E).
Now E is just the equilibrium matrix of the 111, n-particle system studied in [ 12].
As we proved in Lemma A.6 of Lc., its spectrum reads
glEy={expiln—1})cexpiln—23)c,...,expi{—n+1)e}. (521
Thus we deduce

o(Lic;x. py=all y={exply,+in+1-2k) o) j=1 .. Nk=1 ..n}, (522)

so we have achieved our aim.
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We now exploit the spectral characteristics just obtained to prove the identities
(5.7). First, we note that (5.18) and our standing assumption ¢ € (0, n/n) entail that
o(L) is non-degenerate. Thus L is diagonalizable:

L(c; x, p) ~diag(exp(n; +i(n—1) ¢), .., exp(yy+i{ —n+1)¢c)). (5.23)
Now we also have (using again the above  — oo asymptotics)
L(nc; X, P)~ diag(exp 7,, ..., €Xp # n)- (5.24)

Combining the definition (3.14) with the similarities (5.23) and (5.24), we deduce

N n
H,_ s(c;x, p)=2k""sin(kc) Y, exp(dkn,) Y, exp(idk(n+1—2k) c)
k=

J=1 1

N
=2k "' sin(nxc) Y, exp(dkn,), (5.25)
j=1
and
N
H, s(nc; X, P)=2k""'sin(knc) Y exp(dkn;), (5.26)
Jj=1

resp. Thus the identities (5.7) follow.

As announced, we relegate the proof of invariance of Q, under all of the H, ;
flows to later sections, and conclude this section by tying in the above with the
fusion picture established in Section 2. Since this only involves kinematics, we may
as well consider the time-zero case, taking also v=20 to ease the notation.

Obviously, the nN theta’s in (2.21) correspond to the eigenvalues of the Lax
matrix L(c; x, p), with the N eta’s equal to the eta’s of this section. To understand
the connection in more detail, however, we should reconsider the analytic continua-
tions of various relevant quantities along the path (54). First, we recall from
Section 3 that in the initial point ¢ =0 (which belongs to the Il (¢, nN) phase
space) the (time-zero, v=0) r-function can be written both as

=15+ A(x(0))] (5.27)
and as
=1,y +L(—c;6(0),4(0)),  (6(0), ¢(0))=D(c; x(0), p(0)).  (5.28)

Moreover, as we have seen in this section, the spectrum of the Lax matrix
L{c; x(¢), p(¢)) changes from exp(@,5(0)) < --- <exp(6,(0)) to (5.22) as ¢ goes
from 0 to #/2, with » determined by

(n, y)=D(nc; X, P). (5.29)
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It is therefore quite plausible that the path (5.4) amounts to a “fusion path™ as
detailed in Section 2. Indeed, in later sections we will present the somewhat
involved arguments from which this expectation rigorously follows. In this section,
however, we take the path correspondence for granted, and observe that it is quite
easy to continue the “particle representation” (5.27) along (5.4): In the endpoint we
get, successively,

nN

N
=[] (l+expx,(n/2) =[] (1+(=)" 'exp X))

l=1 J=1

=|ly+(—=)" "4 =1y+(=)" " L(—ncin, y)l. (5.30)
Thus the parameter Q, from Section 2 (cf. (2.24)~(2.26)) can be chosen
Q,=y;+(n~1)mxi j=1 ., N, (5.31)

S0 as to obtain equality of the fused r-function from Section 2 and the z-function
obtained from (5.27) by analytic continuation.

The choice of the imaginary part in (5.31) is in accordance with the analytic
continuation of the identity

nN nN

T x/(0)=TY g,(0). (5.32)

I=1 =1

(This identity follows from |A(x)|=|L(—¢; 8, q)|, cf. (3.20).) Indeed, the lhs
continues to

N N N
Y X, +Nn-l)ri=Yy y,+Nn—1)zni=Y Q, (5.33)
Je=1 J=1 J=1

and, in view of (2.24), this is what one gets from continuing the rhs. Notice that the
imaginary part (or, equivalently, the “extra” factor (—)” ' in (5.30)) suggests that
one should view the above n-particle bound states as antiparticles for n even and
as particles for n odd. In this connection we point out that a shift of one or more
of the X; in (5.2) by ni has the effect of flipping the charge—this can be read off
from our account in Section 4.

6. INTERLUDE: THE III, MOLECULE

This section is concerned with an n-particle system that is of interest in itself, but
which plays only an auxiliary role in this paper. Indeed, as mentioned and used in
the previous section, E (5.20) is the equilibrium Lax matrix of the n-particle system
referred to as the III, system in [12]. Our results on this integrable system will be
invoked in particular to deduce invariance of Q, for N=1 under all of the H, ;
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flows. More importantly, however, the insights gained from this special case can be
exploited to get a handle on the arbitrary-n, setting of the next section.

Let us observe first of all that the pertinent formulas from the previous
section are very simple for N=1. Indeed, H, ,(nc, 1; X, P) (5.14) becomes a free
Hamiltonian 2 sin(nc) exp(P), and (5.16), (5.17) become

P=y, X(t) =y + 2t sin(nc) exp(P). (6.1)
Thus the flow generated by H, . (c, n;x, p) (5.13) turns into
X () =[X(t) + 2mi(n— k)] /n, pety=P, k=1,..,n (6.2)
Hence, L, is in fact time-independent, and reads
L(c; x, p)=exp(P) E. (6.3)

Now in [12] the 11, and III, systems were connected via analytic continuation
in the scale parameters x4 and f multiplying the x,;’s and p,’s, resp., cf. the proof of
Theorem 3.5 in lc. In this paper we take 4= f=1, but the continuation along the
path (5.4) has substantially the same effect as the g, f continuation, since it yields
purely imaginary x and p differences (namely, x,—x,=2ni(l—k)/n, p,—p;=0),
giving rise to the I1I, equilibrium Lax matrix E.

There is however a slight difference resulting from the two different continuation
procedures. This concerns the center of mass coordinates X and P, which appear as
multiplicative factors exp(X) and exp(P) when the matrices A(x) (3.15) and
L(c; x, p) (3.10) are continued along the path (5.4). By contrast, the yx, § continua-
tion in [ 12] gives rise to factors exp(iX) and exp(iP) (taking |u|=|f]=1).

Now this difference does have consequences (to be discussed shortly). Even so,
most of the results from [12] apply here, too. This is because the center of mass
motion and the internal motion decouple when the III, system is defined on a
suitable phase space, viz., the space Q¢ given by (1.43) in [12]. In that setting the
center of mass coordinates vary over R (cf. (1.44) in l.c.), and the action-angle map
and its harmonic oscillator extension factorize in a trivial center of mass part and
an internal map encoding the physical behavior of the system.

We can therefore use various features associated with the internal variables as a
starting point for tackling the invariance problem for arbitrary n;. Now this
problem is of a local nature, so we need only generalize those results from [12]
that have a bearing on the situation close to the III, equilibrium. In particular,
there is no need for the somewhat involved coordinatizations we employed in lc.
to prove that the III, n-particle system (or, more precisely, a mathematically con-
venient version) wants to live on a phase space R*x P"~! in which Q¢ is dense.
Instead, we are going to introduce local oscillator variables that are simpler to
work with, and in terms of which we can study Q, and its generalization in the
next section.
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We begin by embedding Q, in a subspace Q.. =C*" of real dimension 2n, by
allowing x,, .., p, to take values

xp=[X+2nin—k)}/n+ ix,, XeR, a,e(—¢,¢&), k=1,...n (64)
pk=P+iﬂkﬂ PE Ra ﬂke(""gz, 82), k=1,..., n, (6.5)

where ¢, €(0, n/n—¢) and &, € (0, =/2) are at our disposal, and where

Y a=0, Y Bi=0. (6.6)

k=1 k=1

Since we take &, €(0, n/n—c¢), the Lax matrix L(c;x, p) is well defined and
holomorphic on Q,... Moreover, from Section 2.3 in [12] it follows that its spec-
trum is simple and may be written

a(L) = {exp(0,), ... exp(6,)}, ReO,=P, k=1,.,n, Y Imé6,=0, (6.7)

k=1

with the difference variables
o= —U0,—06,,1)/2, k=1,.,n—1 (6.8)
satisfying
o =0, k=1,..,n—1 (6.9)

Now on £, we have §, = c<n/n, so from now on we may and will choose ¢;, ¢,
sufficiently small so that

o.€lc, m/n], k=1,.,n—1 (6.10)

on all of Q..
We proceed by introducing variables

(X, PiU )y o Uy gy Uys o Uy ) €R?” (6.11)

on £, that are not only canonical,

n n-—1
S dx, Adpe=dX AdP+ Y dvg A duy, (6.12)
k=1 k=1
but also satisty
uip +vi=4(d,—c), k=1,.,n—1. (6.13)

Thus, the subspace 2, of 2, is characterized by all (1, v;) being equal to (0,0).
To detail these “harmonic oscillator variables” u,, .., v,_,, we continue with some
preparations.
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To begin with, the map @ (3.21) defined on the II,,, phase space £(n) (3.17) can
be analytically continued to

2, =0Q,.\2,. (6.14)

By definition, the exceptional variety 2, consists of all points where one or more
inequalities (6.9) are equalities (in particular, 2, = ,). The continuation of 6(x, p)
can and will be chosen such that on the restricted space £, it satisfies (6.7) and
dr>c¢, k=1,..,n—1. The corresponding continuation of ¢(x, p), however, is multi-
valued: Going around noncontractible loops in 2, yields additive multiples of 2xi.
The sum of these multiples vanishes, since one has

o= i Ggp= i Xp=X+{(n—1)7i (6.15)
k=1

k=1
in view of (6.4) and (6.6). (These assertions readily follow from Chapter 3in [11];
cf. also below.)
Next, we introduce the variables
Y=g+ - +q)—k(g,+ --- +¢q,)/n]. k=1,.,n—1, (6.16)
so that we have
q,=Q/n—1y,

quQ/n—i()’z—)’l) (6.17)

C]n'.'= Q/n+iy, .
It is not obvious, but true, that the function y,(x, p) is real-valued on £,, and since
its values are determined mod 27z, it may and will be viewed as an angle coordinate.
Moreover, using the definition (6.8) of J, one easily verifies the equality
do ndg=dP A dX+2do n dy. (6.18)
We are now prepared to define the announced oscillator variables: They read
U, = —2(0,— ) cos yy., v, =200, —c)siny,, k=1,..,n—1. (6.19)
Obviously, this entails (6.13), and one readily checks
2dé Ady=du n dv. (6.20)

Composing the multi-valued map

@: 02, - C, (x, p)— (6, 9) (6.21)
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with the two coordinate changes just detailed, one now obtains a one-valued
bijective map

Y2 -R*x, (x, p)> (P, X; u,v). (6.22)

(The map ¥ is surjective by definition. Its injectivity is not immediate, but this
property follows from the definition of Q,,. and [12].) Since canonicity of @ is
preserved under analytic continuation, one now deduces (6.12) from (6.20) and
(6.18).

By construction, the set % in (6.22) is an open neighborhood of the origin in
R*” =Y on which (ug, v;) #(0,0), k=1, .., n— 1. But one can now extend the map
¥ to a canonical bijective map ¥* on all of Q,,.—this results in all origins being
included in the image, and then one obtains (6.12) and

‘Ql= {(x’ p)EQlocl(uks Uk)=(0a 0),k= 19 ooy Yl—l}, (623)

as announced above. (Note that @ does not extend: the angles do not make sense
at the origins.)

We have now detailed how the harmonic oscillator coordinates u, v are defined
in terms of the analytically continued quantities ¢(x, p), 8(x, p), using the action-
angle variables J (6.8) and y (6.16) as an intermediate step. Before assembling
further tools from [11] and [12] (to be generalized in the next section), it is
expedient to add three remarks.

First of all, let us point out that invariance of Q, under the H, s(c, n) flow is a
simple corollary of the above developments. Indeed, by virtue of real-analyticity the
functions (x, p)+— P, X, u, v extend to holomorphic canonical coordinates on a
complex neighborhood of ©,<C?', and since u;=---=v,_,=0 on £,
invariance of Q, can be read off from the dependence of H, ; on these variables.
Specifically, we recall

H, ;=2K"'sin(ke) Y. exp(dkby) (6.24)

k=1

and note that (6.7) and (6.8) entail

01=P+2l[(n"1)51+(n—2)52+ oot +5,,41]/n
— 7' — _— ‘,’ .. .

02.P+_z[ O +(n—2)0,+ +d,_,]/n (625)

0,=P+2i[~0,—20,— --- —(n—1)9d,_,]/n

Since J, depends linearly on uj +wvi (recall (6.13)), it follows that the gradients
V.H, ; and V_H, ; vanish on 2,, implying the announced invariance.

Secondly, it should be emphasized that complex neighborhoods and holo-
morphicity are essential in the previous paragraph. Indeed, on 2, the gradients
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V.H, ;and V H, , are not real-valued. so the flows expiz, ,H, ,) do not leave £,
invariant. (In the holomorphic context the expression “flow™ often refers to a com-
plex flow parameter. However, here as elsewhere in this paper, we think of flow
parameters 7, , € K. Furthermore, we are referring to the arbitrary-n case; For n=2
one does get real gradients and the flows stay in £, for non-zero time intervals
depending on the initial point.)

Our third remark concerns a comparison of the HI, system studied in [12] and
the slightly different version arising in this paper. As explained below (6.3), the dif-
ference consists in the dependence on the center of mass coordinates X and P. In
the context of [12] these need not necessarily vary over R, since 4 and L have
dependence expl(zX) and expliP) on X and P, resp. Thus it becomes physically
natural and mathematically feasible to study the system on quotient phase
spaces, modeling n particles on a ring with angular positions v e{ —m, n], all of
whose momenta p, vary over the “first Brillouin zone™ { —x, »]. Furthermore, one
obtains real-valued commuting Hamiltonians by taking for instance Tr{L" + L "),
k=1,2, ..

By contrast, the matrices 4 and L arising in the present setting have dependence
exp(X) and exp{P). Thus one must let X and P vary over R—which is of course
in accord with the s, -soliton picture we are modeling. A second consequence is,
that the Hamiltonians Tr(L* + L ") are now not real-valued on Q, (which may be
viewed as a subset of the phase space ©° (1.44) in [ 12]). Indeed, this can be read
off from (6.24) and (6.25). Correspondingly, the associated flows are not even
locally defined on Q..

As announced above, we now turn to further ingredients from [12] and [11]
that we need to generalize in the next section. Specifically, we need a renormaliza-
tion of the dual Lax matrix L{ —¢; #, ¢) (in terms of which the r-functions can be
defined) that enables us to continue the new matrix from €( M) to points (#, ¢) with
# of the form (2.21). Moreover. in the next section we are going to define the
generalization of the space @, to the arbitrary-n, setting indirectly, namely as the
image of an explicit space €2 under a suitable branch of the analytically continued,
reparametrized and extended inverse action-angle map @ ', defined at first on
Q(M). Roughly speaking. we are going to reduce the branch fixing to the N=1
case by letting ¢ | 0. Thus, we must first fix the branch for N=1, ensuring in
particular that the image of &, equals the space Q, as defined directly already in
Section 5. (Here, we are switching again to a picture of maps relating distinct
spaces—as opposed to viewing the maps as different coordinatizations of the same
space, which we did in the first part of this section. This is notationally and concep-
tually more convenient, as long as we have not yet proved what we intend to
prove.)

In keeping with this program, we begin by defining a similarity transform L, of
the dual Lax matrix. For N=1 (2.21) reads

n+in+1-2k)¢ neR, k=1,..n (6.26)
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and when we try to continue L(—c; 0, g) or its diagonal similarity transform
C(8) D(8, q) (with C, D given by (2.20), (3.1), resp.) to the points (6.26), then we
obtain diverging matrix elements due to the poles in the elements C, ..,
k=1, .., n—1, of the Cauchy matrix. We now define a renormalized matrix L, that
does not diverge as & converges to (6.26), and which has further properties to be
revealed shortly. It reads

_ 3 sh((8, —0,,)/2 —ic) ‘/2' sh( —ic)
L"""e"p< kQ/"+n§kqm>m@k< Sh(Gr— 6,2 > (0 — B2 —10)

Sh((6,—6,,)/2 + ic)\ 2
exp (lQ/n— 5 q,,,> I (b (ihz 91_'"(3/ V”;’”) k=1, .,n (627)
m<i—1 mAl m

(For (6, q) e (n) the square-root sign ambiguity in each product term is fixed by
requiring positivity for ¢ =0, and then continuing to ce(0, z/n).) Equivalently, we
may set

L.=D,CDD", (6.28)

where D, is the diagonal matrix with elements

h((8, —0,)/2 —ic)\ '

Isk 212k (6.29)

Thus L, is indeed a similarity transform of CD.

We proceed by showing that L, does have a finite limit as § converges to (6.26).
To render the limit unique, we must specify the path along which L, is to be
continued from €(n) to (6.26). (Of course, no ambiguities arise from continuing ¢
to C") To this end we start from the point (6.26) with ¢ replaced by —ic*,
¢t e(c¢, m/n]. Thus we obtain a theta-cluster around 7 ordered in the required
fashion. Now we rotate this cluster over n/2 (around #). Then we wind up with
positive radicands in (6.27) (for instance, sin((/— j) ¢* —¢)/sin({—j) ¢* >0), and
taking ¢ very small one sees that all square roots are in fact positive in this point.
Letting now ¢™* | ¢, one readily verifies that all matrix elements of L, converge to
0, save for the elements 12, 23, ..., nl. To be more specific, a straightforward calcula-
tion yields

hr{l L, .. =exp(Q/n), (6.30)

lim L, .z .1 = —exp(Q/n), k=1,.,n—1. (6.31)

ctle

Next, we consider L, on the image of the above space Q, (6.14) under the
map &. It can be written

L,=exp([ X+ (n—1)ni]/n) diag(exp(—1iy,), ... exp(—#,_1), 1)
~U(y, wn 0, 1) diag(1, exp(iy,), ..., eXp(y,— 1)) (6.32)
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in terms of the variables y (6.16) and o (6.8). (Here, we also used (6.15).) It is far
from evident, but true, that the matrix U(J) is umitary—this follows from
Appendix A in [12]. Thus, the matrix exp(— X/n) L, is unitary on the image of Q,.
Transforming to the harmonic oscillator coordinates (6.19), a second key property
of L, is that it extends to a real-analytic function of u,, .., v, _; on ¥#(Q,..), as we
now explain.

Of course, real-analyticity of L, on ¥(£,) is evident. The crux is, that allowing
origins (u,, v;)=(0, 0) does not give rise to singularities: The harmonic oscillator
coordinates serve to uniformize the square-root branch varieties occurring in the
dual Lax matrix when the variables 0, ¢ are used. This real-analytic extension
property of L, is not immediate, and we continue by showing why it holds true. (As
will be seen, the key point applies to the general setting of the next section.) First
we observe that by virtue of (6.8) the dependence of U(d) in (6.32) on d,, ..., §

n—1
occurs via functions
m 172
sin(Z 5k+a> , I<ism<n—1, ae{—c0,c} (6.33)
k=1

that are positive on 2, and that stay away from 0 on Q.. unless x = —c¢ and m=1.
In view of (6.13), all of these functions except sin(J, — c¢)'/ are real-analytic in u, v
on Q... Now in U(J),, the exceptional functions sin(é, — ¢)? and sin(6,_, —¢)*"?
occur in the products for k=1,..,n—1 and /=2, ..., n, but they are canceled by the
Cauchy matrix denominator sin(d,—c) when [/ equals k+1, cf (6.27). Since
L, ..L,,_,, are p-independent (cf. (6.32)), it follows that these matrix
elements have a real-analytic extension. Taking now /% k + 1, the Cauchy matrix
element is manifestly real-analytic, and we need only observe that we may write

exp( —iy,) sin(d, — ¢)? sin(d; — ¢)'* exp(iy,)

sin( (u + vi)/4)>”2 (Sin((u? + 1112)/4)>”2

L
up+v; u? +v?

= (uy + v )(u, — ivy) ( (6.34)

to deduce real-analyticity of the remaining factors in L, ,,. (Indeed, the function
X (sin(x)/x)*? is holomorphic at x =0.)

The remainder of this section deals with the analytic continuation and branch fix-
ing of the inverse action-angle map

&:8(n) - 2(n), (6, q)—(x, p). (6.35)

We studied the continuation properties of the functions x(6, ¢), p(6, ¢) in con-
siderable detail in Chapter 3 of [11], and we begin by summarizing the pertinent
features obtained there. First of all, we required {Im €, | <c, so as to block multi-
valuedness coming from the pair potentials f(c; 8, — 8,) (2.15). Then we proved that
the map & extends to a multi-valued holomorphic map R in a domain #°° obtained
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from this polystrip by discarding three analytic subvarieties of complex codimen-
sion one.

The first variety is the pole variety of the potentials—the subset where 6, =0,
(mod 2xi) for some k s /. The second variety consists of all points where the dual
Lax matrix (chosen equal to C(8) D(4, q) in [11]) has degenerate spectrum. The
third variety consists of all points where the dual Lax matrix has a pair of eigen-
values o, o; such that «, = exp(2ic) «;. (Such points give rise to square-root branch
points for the functions V,(c; x), cf. the similarities (3.19), (3.20).)

Now in this paper we need to continue R beyond the strips |Im 6, | <c, as is clear
from (2.21) and (6.26). Inspection of the arguments in Chapter 3 of [12] shows
that this can be done: One need only delete the branch varieties of the potentials
(the subset where 8, — 8, = 2ic (mod 2xi) for some pair &, /), and discard once more
the above three varieties, taking however into account that the two spectral
varieties now depend on the sheet for the potentials V,(c; #) (3.12). (Observe that
the spectrum of the dual Lax matrix is not invariant under flipping the signs of one
Or more pair potentials.)

The latter source of multi-valuedness of R is a new feature, not handled in [11],
since this was not needed. We can avoid it in the present context, too, as will be
made clear shortly. On the other hand, we do need to know about the multi-
valuedness of R restricted to the domain #%: When (x° p°) is one value of the
restricted map lying over some (6°, ¢°) e #”, then all other values are obtained by
taking products of permutations (o(x°), o(p°)), and adding multiples of 27 to x§
and multiples of 77 to p%. For all of these branches the numbers exp(x?) are the
eigenvalues of L(—c; 0% ¢°) and the numbers exp(69) are the eigenvalues of
L(c; x° p®) [11].

The sums of the multiples just mentioned vanish, as is clear from the sum rules

YXe=Y 4,  2pe=y. 0 (6.36)

These hold true on £ (as follows by comparing determinants in the similarities
(3.20), (3.19)), and since £ is a subset of #”, they are preserved under analytic
continuation. Of course, the equalities (6.36) continue to hold when R is continued
beyond the strips |Im 6,| <c. Another key feature is preserved as well: Since &
(6.35) is a canonical map, R is canonical, too. This entails in particular that R has
a local holomorphic inverse.

Finally, letting ¢ vary over (0, z), the map & (6.35) is analytic in ¢, too, cf.
Appendix B in [10]. More generally, combining the arguments in lc. with the
analysis in Chapter 3 of [11], it readily follows that when R(c; 8o, o), ¢o € (0, 7),
is defined and holomorphic in a (6, g)-polydisc around (8, q,), then it is
holomorphic in a (¢, 6, g)-polydisc around (co, 8y, go)- (Actually, one does not need
Hartogs’ theorem in the proof of Theorem Bl of [10], but only Osgood’s lemma,
whose proof is quite easy [22].) This fact will be exploited to fix a branch of R in
the next section.



264 S. N. M. RUIJSENAARS
After this summary we return to the case at hand, and consider the path

) =n+c (n+1-—2k)expli¢). ctelen/m], k=1,..n  (637)
gl d)=[y+2n(n—k)explig)/n, k=1,..n, (6.38)

where ¢ e [0, n/2]. This path does not meet the pole and branch varieties of the
pair potentials f(c¢; ¢, —6,), and so the matrix L,(—c¢;0,q) is well defined and
holomorphic along the path. Now for ¢* | ¢ the matrix L, evaluated in the
endpoint converges to a multiple of the antiperiodic shift, cf. (6.31), (6.30). Thus we
deduce

lim o( L —c; 0(n/2), g(n/2))) = {exp([ y + 2xi(n—k)1/n) |k =1, ... n}. (6.39)

et le

From this spectrum one reads off that the endpoint does not belong to the above
spectral varieties for ¢* close to ¢.

As a consequence, the map R can be continued to the endpoint for any ¢* in the
interval (¢, ¢ + &) with ¢> 0 small enough. Indeed, though we do not know whether
the above path (6.37), (6.38) is disjoint from the spectral varieties, we can always
avoid the latter by deforming the path slightly, since the varieties have real
codimension two. Furthermore, we can select a suitable branch of R by changing
the part of the path that lies in #?, without changing L, in the endpoint. (This is
because the potentials V,(c; #) are one-valued in #7.)

Now we fix the branch of R as follows. First we change to oscillator variables w, v
(6.19) via (6.8) and (6.16). Then the endpoint belongs to ¥(£2,) for ¢ small enough,
cf. (6.22), so we may and will choose the branch to be ¥ ~!. (Note that our defini-
tion of Q,,. is precisely such as to fix the ambiguities concerning ordering and addi-
tion of mi-multiples.) Denoting this reparametrized branch again by &, it extends
real-analytically to the oscillator origins J;, = ¢. Then the extended map &%= ¥#* !
satisfies by construction

EHQ)=Q,, (6.40)
where
Cr={n yiuv)eR™| (4, 0)=(0,0,k=1,..n—1}, (6.41)
and, as advertised,
Q={(x,p)eC*"xR*|x,=[y+2ni(n—k)]/n, ppr=n,k=1,.,n}. (642)

(Indeed, (6.42) coincides with the space Q, from Section 5, cf. (5.2), (5.3).)
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7. THE GENERAL CASE

We are finally prepared to study the case of arbitrary n, ..., ny € N* Thus, putting
M=n+ - +ny (7.1)

and requiring
ce (0, z/max(n,, .., ny)) (7.2)

as in Section 2 (cf. (2.13)), our objective is once more to arrive at particle dynamics
(3.14), with L an M x M Lax matrix L(c; x, p) continued from (M) (3.17) to a
subspace 2 of C** with 2N real dimensions, modeling the fused r-functions from
Section 2. For unequal n; our results are less explicit and complete than before. In
particular, by contrast to Section 5, we are only able to define €2, indirectly.
Moreover, in the process we need some assumptions that hold true in various spe-
cial cases (notably the equal-n; case), but that we have not proved in full generality.

Our starting point is a renormalized dual Lax matrix L,.(—c; 6, g), where we
take (6, g) in @(M) (3.22) at first. This matrix is defined by (6.28), with C, D given
by (2.20), (3.1), resp., and with the renormalizing matrix D, given by

D,=diag(D", .., D). (7.3)

Here, D!/ is the diagonal n; x n; matrix defined by

k
i=1

pi+l sh((6, o —0,)/2 —ic)\1/2
0 < eex 00 ) . k=1,..n, (7.4)
=41 Sh(gpj+k“91)/2
l#pjn)—k
where
P =0, piEn A+ - +ny, j=2,., N, (7.5)
0= Z Qpysiv j=1,.,N. (7.6)
i=1

Just as in the special case N =1, the matrix L, thus defined on (M) has a finite
limit as @ converges to points of the form (2.21). The continuation path is chosen
once more in such a fashion that the radicands in (7.4) are positive in the points

(9;;+ksnj+i(nj+l~2k)c+, ¢t e(c, n/max(n,, .., ny)]. (7.7)
(Since # satisfies (2.1), this can be done e.g. by increasing first the distance between
successive eta’s so that the theta clusters described below (6.29) yield the required
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ordering ¢/, < --- <#/,. Rotating the clusters over n/2 and letting the eta’s recon-
verge to their fixed values then yields the desired positivity.) With this convention
one obtains in the diagonal blocks

im L, , .. .1 =exp(Q,/n) I flest, .1 =0, (78)
atle : me:l..,..p]}n.»{pj“-*l-l..,.}l«f} ’
l}m Lr.p,+k.pl+l\'+ 1= ‘exp( Qj,/n_,) [—[ ﬂ.[~ H/y’-'-kq»l—am)
ctle L . me;l.....pj}v{p_“I-{»l.‘..HM} (79)
(where k =1...,n,— 1), whereas all other elements have limit 0. (It is to be noted

that (7.8) applies to the special case n,=1 as well.) In the off-diagonal blocks all

elements converge to 0 save for the element in the left lower corner: It yields
[sin(n,c¢) sin(n,c)]'?

Sh((f)pj+nl~ 6;),4- l)/‘z - IC)

n f( (& Hp1+ 1 —Hm)' (7*10)

mell, oo wip g+ 1o M

Wm L, , ., , . =exp(Q,/n) ;

ctle

(Note this amounts to (7.8) for j=/) For later use we also point out that the
analytic continuation described above entails that all of the pair potentials f{(---)
continued to the points (7.7) and occurring in (7.9)—(7.10) converge to 1 when the
distances between the eta’s go to oc. (Of course, in this limit the elements (7.10)
converge to 0 for j#1.)

To proceed, we define local oscillator variables generalizing the N =1 variables
(6.19). Thus we begin by introducing

(52/’5—i(f)pﬁ,(—(i,,ﬁk“)fz, J=L..N, k=1 .,n-1 (711)
yk"’si[(qp]“+ +qp]+k)—kQ,,!n.,-], J=1L..N, k=1 ..,n-1 (712)

as a generalization of (6.8) and (6.16), resp. Next, we first restrict attention to (6, g)
such that

Ny<---<n, yeR dfe(cnm], 7 eR,
J=L..N, k=1,.,n-1, (7.13)
where we have
f"j+l
=y On, j=1,..N, (7.14)
I\'-pj+l
»=E0,—~n—-1)mi, j=1 . N (7.15)

Then we can unambiguously define

u' = 28" —¢)' 2 cos p, o) =2(8Y" —¢)'? sin py, (7.16)
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by insisting that the square roots be positive. The crux is now, that when
L.(—c¢;6,q) is rewritten in terms of the variables 7, y and u'", .. o'V, it is
holomorphic not only in the points (7.13), but also in all points obtained by allow-
ing in addition 8}’ = ¢. Indeed. this follows by the same arguments as in the N = 1
case, cf. the paragraph containing the key identity (6.34).

We continue by introducing a 2N-dimensional space

Qv={m vy o M eRM gy < - <gu'V, ot =0). (717)

As we have just seen, the matrix L(—c;y, viu'", ..o'Y) is well defined and
holomorphic on a complex neighborhood 1 = C* of €. By construction, its
restriction to Q, is such that the determinant |1,,+exp(—2iv¢) L,| equals the
7-function obtained via the fusion procedure described in Section 2, cf. in particular
(2.25)~(2.27). Therefore, it remains to connect the “soliton picture” associated with
Qy to a “particle picture” associated with a particle phase space Q, generalizing
the spaces thus denoted in Sections 5 and 6.

In order to do so, we need certain assumptions already alluded to above. More
specifically, we need a spectral assumption A(sp) and a topological assumption
A(top). We are now in the position to detail A(sp). It concerns the spectrum of L,
restricted to Q. We denote this M x M matrix by

Alny.onyin v, (1, ) eQ(N). (7.18)

Its non-zero elements are given explicitly by (7.9)—(7.10), with 6 related to # via
(2.21), and Q related to » via (7.15). Our spectral assumption A(sp) now reads: For
all (7, y)e@(N) the matrix 4 has simple spectrum, with no pair of eigenvalues
®;, % satisfying x; = exp(2ic) x,.

We shall discuss this assumption in more detail shortly. Taking it for granted, we
first wish to sketch its consequences. In the process, the topological assumption
A(top) will be detailed. To begin with, because L, is holomorphic on a complex
neighborhood . 1~ of 2, we may as well assume (by eventually shrinking .1") that
L, has the above spectral features on all of .1". In particular, this is then the case
for points of the form (7.13), provided ¢* is chosen sufficiently close to ¢ (how close
may depend on the other variables). The crux is now, that the inverse action-angle
map & (6.35) (taking n— M (7.1), of course) continues to a multi-valued
holomorphic map R (cf. Section 6), which is defined in particular in the latter
points (7.13), and when we compose R with the parameter change (7.16) on (7.13),
it admits an analytic continuation R* to all of ..

Now the space €y (7.17) is manifestly convex, so we may and will choose . 1"
simply-connected. Then the monodromy theorem ensures that no multi-valuedness
can arise from loops in .7 . We now select a suitable branch of R¥ on .1~ (our
choice will be detailed later on), and denote this branch of the reparametrized and
extended map by &¥. The particle phase space Q, is then defined by

Q=650 ). (7.19)
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Since canonicity 15 preserved under analytic continuation, and since the coor-
dinate change to oscillator variables is manifestly canonical. the holomorphic map

EE TS M oyt LY e L p) (7.20)

satisfies

N

EFMdy Adpi=dv adnp+ Y de' A du', (7.21)
gl

This canonicity property entails that ¢# admits a local holomorphic inverse on 1.

Unfortunately, we do not know whether ¢# is globally invertible on a suitably

restricted complex neighborhood 1, < " of @, in the general case at issue here.

This injectivity question is intimately related to the problem of obtaining more

information on Q.

To obviate this snag, we assume from now on that Q. (7.19) is simply-connected.
Indeed, this topological assumption A{top). which we conjecture to be true in all
cases, readily entails that such a neighborhood . 1, does exist. To explain this, let &%
denote a local inverse of 6% around a point in Q. Then it is easy to see that &%
continues to a one-valued global inverse on Q. Next, continuing @¥ to a simply-
connected complex neighborhood .1, < 1 of Q4. one deduces that the map &% is
injective on

= O ). (7.22)

with inverse @¥, as advertised.
We are now in the position to define pullback “particle Hamiltonians”

H ,=H_, &  oF=%"! (7.23)
on i, where
. M
H, ,=2x 'sin(ke) Y exp(dkd,,), K=1,2,., 0=+, — (7.24)

o= |

are the usual “soliton Hamiltonians™ on .4,. The latter are real-valued on €, and
now the invariance of @, under all of the H, ; flows follows in the same way as
in Section 6 (cf. the paragraph containing (6.24)).

The definition of the maps is such that the particle Hamiltonians (7.23) coincide
with (3.14), where L= L(¢;x, p) denotes the Lax matrix, suitably continued to
(x, ple {,. More specifically, the definition of the position vector xe C¥ is such
that one has

ol A) = {exp(x). ... exp(xy)}. {7.25)

Therefore, the spectral assumption A(sp) guarantees that the (meromorphic)
radicands in the potentials }7(¢: x) (3.12) have no poles and zeros on . },, so that
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L{c;x, p)is well defined on 1, (The branch choice for L is fixed by the branch
choice for R#, cf. below.)

The above sketch contains the gist of the particle-soliton correspondence in the
general case. We continue by filling in various details, beginning with the spectral
d»umption A(sp) It is satisfied in several cases, which we now consider. First,
taking n, € {1, 2}, j=1..., N, its validity follows from [ 11]. Indeed, in that case the
space Q amountb to a subspace of the space ©% (5.20) in [11], and the assump-
tion is mmsﬁed on all of Q% ¢f also Section 4. (The renormalized dual Lax matrix
employed in Section 5B of Le. differs from, but is similar to the above matrix A4
(7.18) on @,.) Choosing N=2,n,=1,n,=2, the first remark on p. 935 of [ 11]
reveals that in the unequal-n, case (of which this choice is the simplest instance) one
should not expect a simple explicit description of the space 2.

In the special case n;=n, j=1. .., N, studied in Section 3, the spectral abbumpnon
is satisfied as well. Indeed from the fusion argument in Section 2 (cf. (2.21)~(2.27)
with v=0.¢, ;=0) we obtain

Al +A(n, . onyn, v)|

N

St T e (jz Q,)Hf(m n-

me=0 Jao 1 . N} reJ J
|J]=m ¢J
=21y + (=) "L{—ncin, p)
N
=[] A"+ (=)" "exp(X)), (7.26)

J=1

where we also used (7.15) and (5.29). Therefore the spectrum of 4 is given by (7.25)
and (5.2), and so the validity of A(sp) can be read off.

Turning now to the general case, we assert that the two spectral properties
involved in A(sp) hold true on an open dense full measure subset of 2,. To prove
this assertion we exploit perturbation theory. First, letting

n=ma=2d  j=L.LN-=1 d>0, (7.27)

we deduce from (7.9)-(7.10) the limit

lim A(n,. ... ny; 5 v)=A(y), (7.28)
d— o
where
A(yy=diag(A™M(y), e A0, (7.29)

with 4"/ the n, x n, matrix whose non-zero elements read

AN = —exp[(y,—ni)n,], A%, =expl(y,—rd)/n]. k=1 ..n—1 (730)
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Thus A" has spectrum
o(AY) = {exp[ (¥, + 2milk — 1))/n,] k=1, .., n,}. (7.31)
Therefore, after fixing y € R" such that
Y=y, >0, j=1,.,N-1, (7.32)

the spectral properties hold true when the minimal distance d between the eta’s is
large enough. (Since the limit matrix A(y) (7.29) is normal, the spectrum of
A(ny,...,ny;n, ¥) can be handled via the second resolvent formula.) From this one
deduces they can break down only on a real-analytic subvariety of codimension at
least one, and so the assertion follows.

We conjecture that the spectral properties hold true on all of 2, or, equiv-
alently, that the assumption A(sp) is valid. However, we do not need any assump-
tion to prove that the multi-valued holomorphic map R can be continued to points
(0, q) e C* of the following form: ¢ is given by

Gp,+x =L+ 2miln,— k) I/n;, (733)

where y is fixed and obeys (7.32), and 6 is given by (7.7) where  obeys (7.27) with
d large enough and where ¢* varies over (¢, ¢ +¢] with ¢ small enough. Indeed,
consider the path

le+k(¢)=rij+c+(nj+l—2k)exp(z‘¢), j=1L.,N, k=1,.,n, (734)

s THjs

q,,l+k(¢) =[y;+2n(n,— k) exp(ig)]1/n,, J=1L..N, k=1,.,n;, (735

where ¢ € [0, z/2]. We first choose d large enough so that (6(0), g(0)) belongs to
Q(M). Then the path does not meet the pole and branch varieties of the pair poten-
tials f{c; 60,—8,,), so L{—c; 6, q) is holomorphic along the path. Now for d - «
and ¢ 0 the matrix L(—c;6(n/2), q(¢/2)) converges to A(y) (7.29), so it readily
follows that the endpoint does not belong to the two spectral varieties described
below (6.35), provided d is sufficiently large and ¢ sufficiently small. Therefore, R
can be continued to these points, as asserted.

Changing next to oscillator variables (7.16) via (7.11) and (7.12), the
reparametrized map R extends real-analytically to the oscillator origins, since the
matrix L, has this property. As a consequence, the extended map R¥ is holomorphic
on a subset Q, of €, consisting of points for which y is a fixed vector satisfying
(7.32), and » satisties (7.27) with d large enough (the choice of ¢ depends on y).
Now €, is simply-connected, so R¥ is holomorphic in a simply-connected complex
neighborhood . 1; =« C** of @, = @, Since no multi-valuedness arises from loops in
.1;, we can fix a branch &% of R¥ by fixing a branch on Q,.
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To this end we recall that by construction the vectors x, p satisty
# YAng, onyin vy Ho=diaglexp X, . .. exp X (7.36)
(# 11:(11,‘...1'2\,;7]; i) y==explp,) Vite: x), I=1,..M, (7.37)

where
L =diaglexp[n, +ictn, — 1) ], ..explyy +ict —ny + 1)), (7.38)

and where # e GL(M, Uy is uniquely determined up to right multiplication by a
diagonal invertible matrix. Now the definition of 4 {7.18) entails

hm A(n,, .onyon vi= Ay, (7.39)

ARt

with () given by (7.29), ¢f. (7.9)-(7.10). Thus we may and will fix the branch of
x by requiring

X, i ~[ ¥y, +2ritn, - k)] n,. Ynny< - <yng, ¢l (7.40)

{Indeed, this fixes the ordering and 2zi-multiples.)
Next, we readily deduce trom {7.36)-(7.38) that we have

exmp;ﬂ'fl\') lvpj+f((l': \‘) ~ cxp(’?l‘)- )«‘}\,‘,“_\'( A <_“1,/'lll, ()10. (7.41)

{Note that {7.39) and (7.40) entail that . # may be chosen to converge to a block
diagonal matrix for ¢ | 0.) Thus we may and will fix the branch of p by requiring

Pp vk~ Yy < o<y, ¢l (7.42)

{This fixes also the branch for the potentials V,(c¢; x): they all converge to 1 for
10

We repeat that we have reached these conclusions without making any assump-
tions. To proceed further, however, we have to invoke the above spectral assump-
tion A(sp). It entails that the map &% already defined on the subset @, of & has
an analytic continuation to all of €,. Since £, is convex, no continuation
ambiguities arise in the process, and so the space @, (7.19) is well defined. More
generally, we are now in a position to invoke the topological assumption A(top) to
finish our account of the arbitrary-n, case as described above, cf. the paragraphs
containing {7.2047.25).

We conclude this section by discussing A(top) and by completing our account of
the equal-n, case. First, we should point out that A(top) is equivalent to the
assumption that ¥ is injective on Q. Indeed, assuming injectivity, it follows that
&% is a homeomorphism from €, onto Q. so that 2, must be simply-connected.
{Recall €@ is convex, hence simply-connected.) The converse implication was
already used above: Simply-connectedness of Q entails that a local inverse extends
to a one-valued global inverse.
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As a result, the problem of proving the assumptions A(sp) and A{top) boils
down to the algebraic problem of obtaining more information on the spectrum of
the explicitly known matrix A(n,,...nyv:p v} (7.18) on the explicit space €,
{7.17), and on the suitably normalized diagonalizing matrix 4, ¢f. (7.36)-{7.38). As
we have already seen above. in the case where all n, equal 1 or 2, the needed infor-
mation can be found in [ [1]. whereas [ 12] can be invoked to handle the N=1
and arbitrary-n case. We supply the missing information for the equal-n, case in
Appendix E. but we have not found a synthesis of our algebraic arguments (which
heavily lean on the fundamental commutation relation) that would dispose of the
arbitrary-n, case.

Turning finally to the case of equal n,’s, let us take stock of what remains to be
proved: We have defined a space € via (7.19), and now it suffices to show that
this space coincides with the space thus denoted in Section §. Indeed, we recall that
the latter is given by the equations (5.2) and (5.3}, with (X, P) varying over Q(N),
cf. (5.1). Hence it is manifestly convex, so that equality of the two spaces entails
A{top). Moreover, we recall that the argument in the paragraph containing (7.26)
implies A(sp). More specifically, setting n,= ... =ny=n in (7.36}-(742), it says
that the spectrum of A(n. ... n; 5. v) reads

alA)={expl X, + 2riln — k)] n|j=1... N k=1, ..n}, (7.43)
where X 1s determined by
(X. Py=¢&(nein, p), d=@ ! (7.44)

cf. (5.29).
In order to prove equality of the two spaces, we now begin by noting that when
one fixes ¥ with yy < ... < 3|, one obtains

SE{nein, yi~{(y. ) cl0. (745)

Therefore. the branch choice {7.40) ensures that the vector x(#, v) is indeed given
by (5.2). As a consequence, we may choose Vy(¢; x) in (7.37) positive. Doing so, it
remains to prove that the vector p(y, v) determined by (7.37) and (7.42) obeys

EXPIP,, sk =CXPLP, j=1..N k=1 ..n (7.46)

with P given by (7.44). Indeed, in view of {7.45). the branch choice {7.42) combined
with (7.46) entails (5.3).

To prove the remaining equality (7.46), we invoke Appendix E. We show there
that the Lax matrix L{c; x{ X}, p(P)) on the space €, defined in Section 5 can be
diagonalized by a matrix # € GL(nN, C) such that

# 'Lic;x.p)#=Ln, ..n.n). (7.47)
# P Ax) = An, oo, v (7.48)
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where (7, ) is given by (5.29). Consequently, we need only choose # = # ' in
(7.36) and (7.37) to deduce (7.46). We have therefore proved equality of the space
(7.19) and the space 2, from Section 5. and so our account of the equal-n, case is
now complete.

APPENDIX A: TODA SOLITONS REVISITED

In this appendix we reconsider the 2D Toda r-functions specified in Section 1
Specifically, we present a novel proof that these functions satisfy the equation of
motion (1.7), and we study the relation of these 2D Toda solitons to the soliton
solutions of the infinite nonrelativistic and relativistic Toda lattices.

We begin by proving the solution property for the elementary soliton r-functions
considered in Section 3. As we have shown in that section (cf. (3.32)), these r-func-
tions admit a representation

N
tdt ot =Y Fixt,.1 ), (AD

je= i

where the 7,1 dependence of x, is governed by Hamiltonians of the form

H,=4 }\: exp(op,) V(x), o=+, —, (A2)
=1

V=11 fix,— x0. (A3)

pany

Specifically, we have

Flu) =1 +exp(u — 2ive) (A4)
4 =2sin(¢) (A5)
Flx)=(14+sin’(cyshi(x 2n'° (A6)

in the case at hand. ) _

In the next lemma. however, we only assume (A.1)-(A.3). Thus we will be gb!e
to use the lemma in Appendix B, where (A.4)-(A.6) are generalized to an elliptic
setting.

LEMMA A.l.  Assume thar (A1)-(A.3) hold true. with Flu) entire and fix) eren.
Then one has

ol FX) .
~ = 2% 2 —L 1x)y . (A7)
6.8 _Int, / 2 f’x‘,( Flx) A,:“)‘)
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Proof.  The Ths can be written

Y Fx ) T
Nl—Lto,8 x,+0,x,¢ x,8, [ —2L1] A8
2 VR T e VR A
Now from (A.2) we calculate
Sox, =40, Hy =0/ expldp,) V,(x) {A9)

In order to simplify the second derivative, we note that evenness of f{x) entails
Vool exe+ 1,81, 0x,=0, k#j. (A1)
Thus we get
é

O ox={rexpip) b, H |

=27y (exp(p) @,V (—exp(— pi)) Vi—exp(p) V,exp( —p,) &, V)
k

=—78,017). (A1)
Substituting (A9} and (A.11) in (A.8). we obtain the identity {A.7). §

Let us now study the choices {A4)-(A.6). Then one has

LT \\“ chix, 2 —i(v—1)¢)ch(x,2—i(v+1)¢)

r? o ch*(x,/2 = ive)

+ Jows §

(A12)

Combining this with {A.7), we deduce that the above elementary soliton r-functions
solve the 2D Toda equation (1.7} if and only if the functional equations

N o2
—4sin*(c) Y @ Kltxp“) ﬂ( ) >>

oy’ +explx,) ., ((\—\A)/’}

chix, 2+ ichch(x, 2 —ic)
ch(x,2)

-1

=1

~1 (A.13)

hold true. Now it is easy to verify (A.13) for N =1, and for the case N=2 a direct

verification is still feasible, too. For N> 2, however, this is no longer tractable.
We shall prove (A.13) for general N in Appendix D. In fact, we shall obtain a

more general sequence of functional identities, which also entail the formula

N
PIRATSET (A.14)
Juml

when 17, (A3} is given by {A.6). This equation encodes the relativistic invariance of
the 11, (¢, N) system, and can be proved in various other ways, cf. [ 1, 20].
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We continue by proving that the solution property of the elementary soliton
z-functions established via the functional equations (A.13) entails the solution
property for the more general z-functions given by (1.1), (1.2) and (1.10). To this
end we first transform (A.l) back to the original representation (3.31), which
amounts to (2.18), (2.19), with ge BRM., 6,, < -.- <#,. Now it is clear that (1.7) still
holds when we continue ¢ to C*. Similarly, we can continue # to C* with pole
varieties deleted.

Next, we invoke the fusion property established in Section 2. Combined with the
previous paragraph, it entails that any N-soliton z-function with (1.18), (1.19),
(2.11) and (2.12) in effect satisfies (1.7). By analyticity, this still holds for :}‘. neC.

The upshot 1s, that (1.7) holds true for the z-functions (1.1), (1.2), with ap b ¢,
given by (L.11), (1.13), where &% 5eC" and ¢, .., ¢y are restricted by (1.18),
(1.19). Now the points (¢, .., ¢y) thus obtained are easily seen to be dense in
(0, m)". Therefore, invoking analyticity in ¢,. .., ¢y, it follows that the 2D Toda
equation (1.7) is satisfied for arbitrary &° a, be C¥, as announced.

We continue by detailing how the solitons of the infinite nonrelativistic Toda
lattice can be obtained from the 2D Toda solitons by a specialization. To this end
we substitute

a;=ith(6,/2), b,=icoth(6,/2) (A.15)
in (1.1), (1.2), which yields
exp( B ) =th*(¢,—6,)/2. (A.16)

Thus, when we also substitute
exp(&) =exp(q,) [] lcoth(0,—6,)/2] =explq,) V,(7/2; ), (A.17)
ke j
we obtain the Toda lattice solitons as parametrized in [ 1]. More specifically, (1.10)
turns into

& =& +vin(th*(6,/2)) + 2t/sh(b)),  1=1, , +1, (A.18)

when we take 7, ;=0, x> 1, and this amounts to the Toda lattice t-functions given
by Egs. (6.5), (6.6), (6.18)in [1].

It should be noted that the 2D Toda equation (1.7) (which we have proved
above) entails that the r-functions 7,(7) just defined satisfy

Plnr =2livrl g (A.19)

v

Of course, when we now set

x,=In(t,/7._ 1), (A.20)
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we obtain the infinite Toda lattice equation
X,o=expiy, ., — X, )—expix, —x, h ve Z. (A21)

But the equation (A.19) is not implied by (A21), of also the next appendix.
Consider now the more general substitution

shi#f —x)2 chid, —=x)2
§, = | —t— =f " [0, x). A22
E ch(t) +x)2 T shed, + 02 [ ) ‘ )

Amazingly, this szl yields (A.16), and now {1.10} becomes

I | -

/ I ‘ [t ! ’
=3 +vin(th \)inl}th;(ﬂ,—rxi\ﬁ‘»lchx( — )
’ i \: - E

/ sh{t, +a)  sh(#, —x),
(A.23)

¥

when we take 1, =0, > 1, and r, , - r,. Parametrizing exp(ij’) via (A.17), we
obtain once more real-valued positions £,(r, .1 ) via (A.20), provided we require

(0, g)e QN), 10, e(x. x), j=1.,N (A.24)

{The restriction ensures posivity of the argument of In in (A.23), and hence

positivity of 7,.) We conjecture that the functions ¥,(7, .7 ) yield N-soliton solu-

tions of the infinite relarivistic Toda lattice, in a sense that we shall now explain.
The light cone Hamiltonians of this lattice may be taken to be [15]

o . .
S, == Y (expl £fp U1+ fexplx,, —x,)'?

x (14 explx, —x, NP —(1+ 4. (A25)

Here we think of boundary conditions
p, = U, X, =y, =0, v] = 2, (A.26)

with sufficiently fast decrease so that the series converge. Also, the parameter
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